biblio

Export 9168 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
A. N. Rane, Baikar, V. V., V. Kumar, R., and Deopurkar, R. L., Corrigendum: Agro-Industrial wastes for production of biosurfactant by bacillus subtilis ANR 88 and its application in synthesis of silver and gold nanoparticles [Front. Microbiol. 8, (492)] DOI: 10.3389/fmicb.2017.00492, Frontiers in Microbiology, vol. 8, no. MAY, 2017.
C. Saritha, Satpute, D. B., Badarayani, R., and Kumar, A., Correlations of thermodynamic properties of aqueous amino acid-electrolyte mixtures, Journal of Solution Chemistry, vol. 38, no. 1, pp. 95-114, 2009.
K. Anjali, Ajithkumar, T. G., and Joy, P. Alias, Correlations between structure, microstructure, density and dielectric properties of the lead-free ferroelectrics Bi0.5(Na,K)0.5TiO3, Journal of Advanced Dieletrics, vol. 5, no. 4, pp. 1550028 Page 1-6, 2015.
K. Talukdar, Sasmal, S., Nayak, M. K., Vaval, N., and Pal, S., Correlation trends in the magnetic hyperfine structure of atoms: a relativistic coupled-cluster case study, Physical Review A, vol. 98, no. 2, 2018.
M. I. Tamboli, Bahadur, V., Gonnade, R. G., and Shashidhar, M. S., Correlation of the solid-state reactivities of racemic 2,4(6)-di-O-benzoyl-myo-inositol 1,3,5-orthoformate and its 4,4 `-bipyridine cocrystal with their crystal structures, Acta Crystallographica Section C-Structural Chemistry, vol. 70, no. Part : 11, p. 1040+, 2014.
S. Krishnaswamy and Shashidhar, M. S., Correlation of intermolecular acyl transfer reactivity with noncovalent lattice interactions in molecular crystals: toward prediction of reactivity of organic molecules in the solid state, Journal of Organic Chemistry, vol. 83, no. 7, pp. 3952-3959, 2018.
G. S. Jedhe, Paul, D., Gonnade, R. G., Santra, M. K., Hamel, E., Nguyen, T. Luong, and Sanjayan, G. J., Correlation of hydrogen-bonding propensity and anticancer profile of tetrazole-tethered combretastatin analogues, Bioorganic & Medicinal Chemistry Letters, vol. 23, no. 16, pp. 4680-4684, 2013.
K. Kaushlendra, Deepak, V. D., and Asha, S. K., Correlation of architecture with excimer emission in 100% pyrene-labeled self-assembled polymers, Journal of Polymer Science Part A-Polymer Chemistry, vol. 49, no. 7, pp. 1678-1690, 2011.
A. Susan, Kibey, A., Kaware, V., and Joshi, K., Correlation between the variation in observed melting temperatures and structural motifs of the global minima of gallium clusters: an ab initio study, Journal of Chemical Physics, vol. 138, no. 1, p. 014303, 2013.
P. Redhu, Punia, R., Hooda, A., Malik, B. P., Sharma, G., and Sharma, P., Correlation between multifunctional properties of lead free Iron doped BCT perovskite ceramics, Ceramics International, vol. 46, no. 11, pp. 17495-17507, 2020.
Y. Harima, Ogawa, F., Patil, R., and Jiang, X., Correlation between mobility enhancement and conformational change in polyaniline and its derivatives: polaron lattice formation, Electrochimica Acta, vol. 52, no. 11, pp. 3615-3620, 2007.
A. Mallick, Kundu, T., and Banerjee, R., Correlation between coordinated water content and proton conductivity in Ca-BTC-based metal-organic frameworks, Chemical Communications, vol. 48, no. 70, pp. 8829-8831, 2012.
A. Lazar, George, S. C., Jithesh, P. R., Vinod, C. P., and Singh, A. P., Correlating the role of hydrophilic/hydrophobic nature of Rh(I) and Ru(II) supported organosilica/silica catalysts in organotransformation reactions, Applied Catalysis A-General, vol. 513, pp. 138-146, 2016.
P. Deb, Haldar, T., Kashid, S. M., Banerjee, S., Chakrabarty, S., and Bagchi, S., Correlating Nitrile IR frequencies to local electrostatics quantifies noncovalent interactions of peptides and proteins, Journal of Physical Chemistry B, vol. 120, no. 17, pp. 4034-4046, 2016.
Y. Sajeev, Santra, R., and Pal, S., Correlated complex independent particle potential for calculating electronic resonances, Journal of Chemical Physics, vol. 123, no. 20, p. 204110, 2005.
K. M. Solntsev, Ghosh, D., Amador, A., Josowicz, M., and Krylov, A. I., Correction to what drives the redox properties of model green fluorescence protein chromophores?, Journal of Physical Chemistry Letters, vol. 2, no. 21, pp. 2695–2695, 2011.
N. Bachhar, Kurnaraswamy, G., and Kumar, S. K., Core-size dispersity dominates the self-assembly of polymer grafted nanoparticles in solution, Macromolecules, vol. 52, no. 13, pp. 4888-4894, 2019.
M. B. Gawande, Goswami, A., Asefa, T., Guo, H., Biradar, A. V., Peng, D. - L., Zboril, R., and Varma, R. S., Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis, Chemical Society Reviews, vol. 44, no. 21, pp. 7540-7590, 2015.
C. S. Bhatt, Nagaraj, B., Ghosh, D., Ramasamy, S., Thapa, R., Marpu, S. B., and Suresh, A. K., Core-composite mediated separation of diverse nanoparticles to purity, Soft Matter, vol. 15, no. 39, pp. 7787-7794, 2019.
V. V. Deshpande, Patil, M. M., Navale, S. C., and Ravi, V., Coprecipitation technique to prepare ZnM2O6 powders, Bulletin of Materials Science, vol. 28, no. 3, pp. 205-207, 2005.
V. Ravi, Coprecipitation technique to prepare SrNb2O6, Materials Characterization, vol. 55, no. 1, pp. 92-95, 2005.
V. A. Murugan, Gaikwad, A. B., Samuel, V., and Ravi, V., Coprecipitation technique to prepare Sr0.5Ba0.5Nb2O6, Bulletin of Materials Science, vol. 29, no. 3, pp. 221-223, 2006.
V. Samuel, Gaikwad, A. B., Jadhav, A. D., Natarajan, N., and Ravi, V., Coprecipitation technique to prepare NiNb2O6, Materials Letter, vol. 61, no. 11-12, pp. 2354-2355, 2007.
V. Samuel, Gaikwad, A. B., and Ravi, V., Coprecipitation technique to prepare NaNbO3 and NaTaO3, Bulletin of Materials Science, vol. 29, no. 2, pp. 123-125, 2006.
S. C. Navale, Gaikwad, A. B., and Ravi, V., Coprecipitation technique to prepare LiTaO3 powders, Materials Letters, vol. 60, no. 8, pp. 1047-1048, 2006.
I. S. Mulla, Natarajan, N., Gaikwad, A. B., Samuel, V., Guptha, U. N., and Ravi, V., Coprecipitation technique to prepare CoTa2O6 and CoNb2O6, Materials Letter, vol. 61, no. 11-12, pp. 2127-2129, 2007.
H. Muthurajan, Gupta, U. N., Rituraj, B., N. Rao, K., Pradhan, S., Radha, R., and Ravi, V., Co-precipitation technique to prepare BiTaO4 powders, Materials Letters, vol. 62, no. 3, pp. 501-503, 2008.
R. Radha, Gupta, U. N., Samuel, V., Muthurajan, H., Kumar, H. H., and Ravi, V., Co-precipitation technique to prepare BiNbO4 powders, Ceramics International, vol. 34, no. 6, pp. 1565-1567, 2008.
S. C. Navale, Samuel, V., Gaikwad, A. B., and Ravi, V., Co-precipitation technique to prepare BaTa2O6, Ceramics International, vol. 33, no. 2, pp. 297-299, 2007.
N. Natarajan, Samuel, V., Pasricha, R., and Ravi, V., Coprecipitation technique to prepare BaNb2O6, Materials Science and Engineering B-Solid State Materials for Advanced Technology, vol. 117, no. 2, pp. 169-171, 2005.
S. R. Dhage, Pasricha, R., A. Murugan, V., and Ravi, V., Co-precipitation technique for the preparation of ferroelectric BaBi2Ta2O9, Materials Chemistry and Physics, vol. 98, no. 2-3, pp. 344-346, 2006.
S. P. Gaikwad, Dhage, S. R., Potdar, H. S., Samuel, V., and Ravi, V., Co-precipitation method for the preparation of nanocrystalline ferroelectric SrBi2Nb2O9 ceramics, Journal of Electroceramics, vol. 14, no. 1, pp. 83-87, 2005.
S. P. Gaikwad, Potdar, H. S., Samuel, V., and Ravi, V., Co-precipitation method for the preparation of fine ferroelectric BaBi2M2O9, Ceramics International, vol. 31, no. 3, pp. 379-381, 2005.
S. P. Gaikwad, Dhage, S. R., and Ravi, V., Co-precipitation method for the preparation of ferroelectric CaBi4Ti4O15, Journal of Materials Science-Materials in Electronics, vol. 16, no. 4, pp. 229-231, 2005.
U. N. Gupta, Samuel, V., Muthurajan, H., Kumar, H. H., Patil, S. D., and Ravi, V., Co-precipitation method for preparation of Bi3TiNbO9 powders, Ceramics International, vol. 34, no. 3, pp. 675-677, 2008.
N. L. Jadhao, Musale, H. B., Gajbhiye, J. M., and Humne, V. T., Copper-mediated [3+2] oxidative cyclization of oxime acetate and its utility in the formal synthesis of fentiazac, Organic and biomolecular chemistry, vol. 22, no. 3, pp. 521-528, 2024.
S. B. Tayade, Illathvalappil, R., Lapalikar, V., Markad, D., Kurungot, S., Pujari, B., and Kumbhar, A. S., A copper(ii)-coordination polymer based on a sulfonic-carboxylic ligand exhibits high water-facilitated proton conductivity, Dalton Transactions, vol. 48, no. 29, pp. 11034-11044, 2019.
T. Joseph, Shanbhag, G. V., and Halligudi, S. B., Copper(II) ion-exchanged montmorillonite as catalyst for the direct addition of N-H bond to CC triple bond, Journal of Molecular Catalysis A - Chemical, vol. 236, no. 1-2, pp. 139-144, 2005.
G. V. Shanbhag, Joseph, T., and Halligudi, S. B., Copper(II) ion exchanged A1SBA-15: a versatile catalyst for intermolecular hydroamination of terminal alkynes with aromatic amines, Journal of Catalysis, vol. 250, no. 2, pp. 274-282, 2007.
S. Kar, Sen, S., Maji, S., Saraf, D., Ruturaj,, Paul, R., Dutt, S., Mondal, B., Rodriguez-Boulan, E., Schreiner, R., Sengupta, D., and Gupta, A., Copper(II) import and reduction are dependent on His-Met clusters in the extracellular amino terminus of human copper transporter-1, Journal of Biological Chemistry, vol. 298, no. 3, p. 101631, 2022.
P. K. Prasad and Sudalai, A., Copper(I) bromide-catalyzed carbonylative coupling of aryl halides with phenols, alcohols and amines using sodium cyanide as C-1 source: a synthesis of carboxylic acid derivatives, Advanced Synthesis & Catalysis, vol. 356, no. 10, pp. 2231-2238, 2014.
K. Hirano, Biju, A. T., and Glorius, F., Copper-catalyzed synthesis of 2-unsubstituted, n-substituted benzimidazoles, Journal of Organic Chemistry, vol. 74, no. 24, pp. 9570–9572, 2009.
S. K. Verma and Punji, B., Copper-catalyzed regioselective C-H alkylation of phenol derivatives with unactivated alkyl chlorides: manifesting a Cu(I)/Cu(III) pathway, Journal of Catalysis , vol. 430, 2024.
U. A. Kshirsagar and Argade, N. P., Copper-catalyzed intramolecular N-arylation of quinazolinones: facile convergent approach to (-)-circumdatins H and J, Organic Letters, vol. 12, no. 16, pp. 3716-3719, 2010.
D. K. Pandey, Shabade, A. B., and Punji, B., Copper-catalyzed direct arylation of indoles and related (hetero)arenes: a ligandless and solvent-free approach, Advanced Synthesis & Catalysis, vol. 362, no. 12, pp. 2534-2540, 2020.
S. Pradhan, A. Reddy, S., Devi, R. N., and Chilukuri, S. V., Copper-based catalysts for water gas shift reaction: influence of support on their catalytic activity, Catalysis Today, vol. 141, no. 1-2, pp. 72-76, 2009.
K. R. Patil, Sathaye, S. D., Hawaldar, R. R., Sathe, B. R., Mandale, A. B., and Mitra, A., Copper phthalocyanine films deposited by liquid-liquid interface recrystallization technique (LLIRCT), Journal of Colloid and Interface Science, vol. 315, no. 2, pp. 747-752, 2007.
H. Maaoui, Singh, S. K., Teodorescu, F., Coffinier, Y., Barras, A., Chtourou, R., Kurungot, S., Szunerits, S., and Boukherroub, R., Copper oxide supported on three-dimensional ammonia-doped porous reduced graphene oxide prepared through electrophoretic deposition for non-enzymatic glucose sensing, Electrochimica Acta, vol. 224, pp. 346-354, 2017.
C. V. Rode, Mane, R. B., Potdar, A. S., Patil, P. B., Niphadkar, P. S., and Joshi, P. N., Copper modified waste fly ash as a promising catalyst for glycerol hydrogenolysis, Catalysis Today, vol. 190, no. 1, pp. 31-37, 2012.
S. S. Palimkar, P. Kumar, H., Jogdand, N. R., Daniel, T., Lahoti, R. J., and Srinivasan, K. V., Copper-, ligand- and solvent-free synthesis of ynones by coupling acid chlorides with terminal alkynes, Tetrahedron Letters, vol. 47, no. 31, pp. 5527-5530, 2006.
B. Punji, Mague, J. T., Mobin, S. M., and Balakrishna, M. S., Copper (I) complexes of a thioether-functionalized short-bite aminobis(phosphonite), Polyhedron, vol. 28, no. 1, pp. 101–106, 2009.
M. Chauhan, Reddy, K. Prabhakar, Gopinath, C. S., and Deka, S., Copper Cobalt Sulfide Nanosheets Realizing a Promising Electrocatalytic Oxygen Evolution Reaction, ACS Catalysis, vol. 7, no. 9, 2017.
N. G. Patil, Basutkar, N. B., and Ambade, A. V., Copper and silver nanoparticles stabilized by bistriazole-based dendritic amphiphile micelles for 4-nitrophenol reduction, New Journal of Chemistry, vol. 41, no. 11, pp. 4546-4554, 2017.
U. N. Patel and Punji, B., Copper- and phosphine-free nickel(II)-catalyzed method for C-H bond alkynylation of benzothiazoles and related azoles, Asian Journal of Organic Chemistry, vol. 7, no. 7, pp. 1390-1395, 2018.
A. R. Gholap, Venkatesan, K., Pasricha, R., Daniel, T., Lahoti, R. J., and Srinivasan, K. V., Copper- and ligand-free sonogashira reaction catalyzed by Pd(0) nanoparticles at ambient conditions under ultrasound irradiation, Journal of Organic Chemistry, vol. 70, no. 12, pp. 4869-4872, 2005.
A. K. Pandey, Copolymerzation of L,L-lactide with epsilon-caprolactone by using novel zinc L-proline organometallic catalyst, E-Polymers, p. 139, 2010.
S. Kochrekar, Kalekar, A., Mehta, S., Damlin, P., Salomaki, M., Granroth, S., Meltola, N., Joshi, K., and Kvarnstrom, C., Copolymers of bipyridinium and metal (Zn & Ni) porphyrin derivatives; theoretical insights and electrochemical activity towards CO2, RSC Advances, vol. 11, no. 32, pp. 19844-19855, 2021.
S. Singh, Chithiravel, S., and Krishnamoorthy, K., Copolymers comprising monomers with various dipole and quadrupole as active material in organic field effect transistors, Journal of Physical Chemistry C, vol. 120, no. 46, pp. 26199-26205, 2016.
I. Matos, Fernandes, S. N., Liu, H. - R., Tevtia, A. K., Singh, R. P., Manda, L., Lemos, F., and Marques, M. M., Copolymerization of ethylene with unsaturated alcohols and methylmethacrylate using a silylated alpha-diimine nickel catalyst: molecular modeling and photodegradation studies, Journal of Applied Polymer Science, vol. 129, no. 4, pp. 1820-1832, 2013.
A. K. Pandey and Garnaik, B., Copolymerization of aleuritic acid with l-lactic acid and study the aggregation behavior in different solvents, International Journal of Research in Pharmacy and Chemistry, vol. 3, no. 2, 2013.
T. E. Sandhya, Ramesh, C., and Sivaram, S., Copolyesters based on poly(butylene terephthalate)s containing cyclohexyl and cyclopentyl ring: Effect of molecular structure on thermal and crystallization behavior, Macromolecules, vol. 40, no. 19, pp. 6906-6915, 2007.
R. A. Kalgaonkar and Jog, J. Prakash, Copolyester nanocomposites based on carbon nanotubes: reinforcement effect of carbon nanotubes on viscoelastic and dielectric properties of nanocomposites, Polymer International, vol. 57, no. 1, pp. 114-123, 2008.
B. Dhara, Sappati, S., Singh, S. K., Kurungot, S., Ghosh, P., and Ballav, N., Coordination polymers of Fe(III) and Al(III) ions with TCA ligand: distinctive fluorescence, CO2 uptake, redox-activity and oxygen evolution reaction, Dalton Transactions, vol. 45, no. 16, pp. 6901-6908, 2016.
H. Dev Singh, Nandi, S., Chakraborty, D., Singh, K., Vinod, C. P., and Vaidhyanathan, R., Coordination flexibility aided CO2-specific gating in an iron isonicotinate MOF, Chemistry-an Asian Journal, vol. 17, no. 4, p. e202101305, 2022.
S. S. Shaikh, Patil, C. R., Kondawar, S. E., and Rode, C. V., Cooperative acid-base sites of solid Ba-Zr mixed oxide catalyst for efficient isomerization of glucose to fructose in aqueous medium, ChemistrySelect, vol. 5, no. 40, pp. 12505-12513, 2020.
A. Bhattacharya, Converting ab initio energies to enthalpies of formation of free radicals. I. new atom equivalents for alkyl radicals, Aiche Journal, vol. 58, no. 2, pp. 600-609, 2012.
P. Laxmikant Dhepe and Matsagar, B. Mansub, Conversion of hemicellulose using acidic ionic liquids, U.S. Patent PCT/IN2015/0500072014.
M. W. Kasture, Bokade, V. V., and Joshi, P. N., Conversion of fly ash - an environmentally detrimental waste to zeolite beta (BEA) for commercial catalytic applications, Journal of the American Ceramic Society, vol. 88, no. 11, pp. 3260-3263, 2005.
H. Kakkad, Khot, M., Zinjarde, S. S., RaviKumar, A., V. Kumar, R., and Kulkarni, B. D., Conversion of dried aspergillus candidus mycelia grown on waste whey to biodiesel by in situ acid transesterification, Bioresource Technology, vol. 197, pp. 502-507, 2015.
G. Deshmukh and Krishnamoorthy, K., Conversion of curved assemblies into two dimensional sheets, Nanoscale, vol. 11, no. 12, pp. 5732-5736, 2019.
B. M. Matsagar, Munshi, M. K., Kelkar, A. A., and Dhepe, P. Laxmikant, Conversion of concentrated sugar solutions into 5-hydroxymethyl furfural and furfural using Bronsted acidic ionic liquids, Catalysis Science & Technology, vol. 5, no. 12, pp. 5086-5090, 2015.
A. Shrotri, Tanksale, A., Beltramini, J. Norberto, Gurav, H., and Chilukuri, S. V., Conversion of cellulose to polyols over promoted nickel catalysts, Catalysis Science & Technology, vol. 2, no. 9, pp. 1852-1858, 2012.
P. Bhaumik, Dhepe, P. Laxmikant, Dmitry, M., and Olga, S., Conversion of biomass into sugars, in Biomass sugars for non-fuel applications, Cambridge, UK: Royal Society of Chemistry, 2015, pp. 1-53.
K. Taniguchi, Kusumawati, E. N., Nanao, H., Rode, C. V., Sato, O., Yamaguchi, A., and Shirai, M., Conversion of benzyl phenyl ether to monoaromatics in high-temperature aqueous ethanol solution under high-pressure carbon dioxide conditions, New Journal of Chemistry, vol. 47, no. 27, pp. 12561-12569, 2023.
A. M. Khayum, Vijayakumar, V., Karak, S., Kandambeth, S., Bhadra, M., Suresh, K., Acharambath, N., Kurungot, S., and Banerjee, R., Convergent covalent organic framework thin sheets as flexible supercapacitor electrodes, ACS Applied Material & Interfaces, vol. 10, no. 33, pp. 28139-28146, 2018.
G. Pandey, Dumbre, S. G., Khan, M. Islam, and Shabab, M., Convergent approach toward the synthesis of the stereoisomers of C-6 homologues of 1-deoxynojirimycin and their analogues: evaluation as specific glycosidase inhibitors, Journal of Organic Chemistry, vol. 71, no. 22, pp. 8481-8488, 2006.
N. C. Desai, Bhatt, K., Jadeja, D. J., Mehta, H. K., Khedkar, V. M., and Sarkar, D., Conventional and microwave-assisted organic synthesis of novel antimycobacterial agents bearing furan and pyridine hybrids, Drug Development Research, vol. 83, no. 2, pp. 416-431, 2022.
N. A. More, Jadhao, N. L., Garud, D. R., and Gajbhiye, J. M., Convenient synthesis of the enantiomerically pure (S)-2,4-dihydroxybutyl-4-hydroxybenzoate using hydrolytic kinetic resolution, Synthetic Communications, vol. 48, no. 16, pp. 2093-2098, 2018.
R. A. Joshi, Garud, D. R., Muthukrishnan, M., Joshi, R. R., and Gurjar, M. K., Convenient synthesis of the enantiomerically pure beta-blocker (S)-betaxolol using hydrolytic kinetic resolution, Tetrahedron-Asymmetry, vol. 16, no. 23, pp. 3802-3806, 2005.
M. Sasikumar, Nikalje, M. D., and Muthukrishnan, M., Convenient synthesis of enantiomerically pure (R)-mexiletine using hydrolytic kinetic resolution method, Tetrahedron-Asymmetry, vol. 20, no. 24, pp. 2814-2817, 2009.
S. S. Patil, Tawade, B. V., and Wadgaonkar, P. P., Convenient synthesis of alpha,alpha `- homo- and alpha,alpha `-hetero-bifunctionalized poly(epsilon-caprolactone)s by ring opening polymerization: the potentially valuable precursors for miktoarm star copolymers, Journal of Polymer Science Part A-Polymer Chemistry, vol. 54, no. 6, pp. 844-860, 2016.
V. A. Mahajan, Shinde, P. D., Borate, H. B., and Wakharkar, R. D., Convenient synthesis of 5-methylene-4-substituted-2(5H)-furanones, Tetrahedron Letters, vol. 46, no. 6, pp. 1009-1012, 2005.
L. Muthusubramanian and Mitra, R. B., Convenient synthesis of 1-acetyl-2,2-dimethyl-3-arylcyclopropanes, Organic Preparations and Procedures International, vol. 40, no. 3, pp. 311-315, 2008.
M. K. Sahoo, Sivakumar, G., Jadhav, S., Shaikh, S., and Balaraman, E., Convenient semihydrogenation of azoarenes to hydrazoarenes using H-2, Organic & Biomolecular Chemistry, vol. 19, no. 24, 2021.
Y. Soni, Kumar, A. Erumpukuth, Nayak, C., Deepak, F. Leonard, and Vinod, C. P., Convenient route for Au@Ti-SiO2 nanocatalyst synthesis and its application for room temperature CO oxidation, Journal of Physical Chemistry C, vol. 121, no. 9, pp. 4946-4957, 2017.
G. Suresh, Nadh, R. Venkata, Srinivasu, N., and Yennity, D., Convenient new and efficient commercial synthetic route for dasatinib (sprycel®), Synthetic Communications, vol. 47, no. 17, pp. 1610-1621, 2017.
S. P. Chavan, Khobragade, D. A., Pathak, A. B., and Kalkote, U. R., Convenient formal synthesis of (+/-)-paroxetine, Synthetic Communications, vol. 37, no. 18, pp. 3143-3149, 2007.
S. P. Chavan, Harale, K. R., Dumare, N. B., and Kalkote, U. R., Convenient formal synthesis of (2S,3S)-3-hydroxy pipecolic acid, Tetrahedron-Asymmetry, vol. 22, no. 5, pp. 587-590, 2011.
E. Balaraman and Swamy, K. C. Kumara, Convenient chromatography-free access to enantio-pure 6,6’-di-tert-butyl-1,1’- binaphthalene-2,2’-diol- its 3,3’-dibromo, di-tert-butyl and phosphorus derivatives: utility in asymmetric synthesis, Tetrahedron-Asymmetry, vol. 18, no. 17, pp. 2037–2048, 2007.
U. R. Kalkote, Purude, A. N., Puranik, V. G., and Gurjar, M. K., Convenient chemoenzymatic synthesis of (1S,7aS)-1-hydroxy-5-oxo-4-(2 `-carboxyethyl)-7a-methyltetrahydro-indane - a key intermediate of steroids, Journal of Molecular Catalysis B-Enzymatic, vol. 40, no. 1-2, pp. 38-43, 2006.
K. Pradhan, Selvaraj, K., and Nanda, A. K., Convenient approach to the synthesis of different types of schiff's bases and their metal complexes, Chemistry Letters, vol. 39, no. 10, pp. 1078-1079, 2010.
S. Mitragotri, Kulkarni, M., Desai, U., and Wadagaonkar, P., Convenient and mild protocol for preparation of α –trimethylsilyloxyphosphonates using sulfamic acid and their oxidation to α – ketophosphonates in the presence of N-bromosuccinimide, Arkivoc, vol. 2021, 2021.
S. P. Borikar and Daniel, T., Convenient and efficient protocol for the synthesis of acylals catalyzed by bronsted acidic ionic liquids under ultrasonic irradiation, Ultrasonics Sonochemistry, vol. 18, no. 5, pp. 928-931, 2011.
S. N. Rai, Kalluraya, B., Lingappa, B., Shenoy, S., and Puranik, V. G., Convenient access to 1, 3,4-trisubstituted pyrazoles carrying 5-nitrothiophene moiety via 1,3-dipolar cycloaddition of sydnones with acetylenic ketones and their antimicrobial evaluation, European Journal of Medicinal Chemistry, vol. 43, no. 8, pp. 1715-1720, 2008.
S. S. Shankar, Rai, A., Ahmad, A., and Sastry, M., Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings, Chemistry of Materials, vol. 17, no. 3, pp. 566-572, 2005.
V. Dhyani and Singh, N., Controlling the cell adhesion property of silk films by graft polymerization, ACS Applied Materials & Interfaces, vol. 6, no. 7, pp. 5005-5011, 2014.
A. Azarifar, Yadav, P. A., Chawla, A. K., Jog, J. Prakash, Patil, S. I., Chandra, R., and Ogale, S. B., Controlling stoichiometry in low temperature synthesis of La0.7Sr0.3MnO3 nanoparticles, Advanced Science Letters, vol. 4, no. 2, pp. 424-430, 2011.
D. Rokade, Azad, L. B., Poddar, S., Mishra, S., Pol, H. V., and Shukla, R., Controlling necking in extrusion film casting using polymer nanocomposites, Journal of Macromolecular Science Part B-Physics, vol. 56, no. 4, pp. 213-233, 2017.
D. Rokade, Chougale, S., Patil, P., Bhattacharjee, T., Gawande, D., Pol, H., and Dhadwal, R., Controlling draw resonance during extrusion film casting of nanoclay filled linear low-density polyethylene: an experimental study and numerical linear stability analysis, Journal of Plastic Film & Sheeting, vol. 37, no. 3, p. 8756087920978443, 2021.
P. Gogoi, Kanna, N., Begum, P., Deka, R. C., Satyanarayana, C. V. V., and Raja, T., Controlling and stabilization of Ru nanoparticles by tuning the nitrogen content of the support for enhanced H-2 production through aqueous-phase reforming of glycerol, ACS Catalysis, vol. 10, no. 4, pp. 2489-2507, 2020.

Pages