biblio

Export 9168 results:
Journal Article
V. V. Ranade, Sharma, M. K., and Kulkarni, A. A., CRE for magic(modular, agile, intensified & continuous) processes, Chemical Engineering Journal, vol. 278, pp. 454-468, 2015.
A. Sharma, V. Dambhare, N., Bera, J., Sahu, S., and Rath, A. K., Crack-free conjugated PbS quantum dot-hole transport layers for solar cells, ACS Applied Nano Materials, vol. 4, no. 4, pp. 4016-4025, 2021.
R. Samson and Dharne, M., COVID-19 associated mucormycosis: evolving technologies for early and rapid diagnosis, 3 Biotech, vol. 12, no. 1, p. 6, 2022.
R. Sekhar Roy, Mondal, S., Mishra, S., Banoo, M., Sahoo, L., Kumar, A., Vinod, C. P., De, A. K., and Gautam, U. K., Covalently interconnected layers in g-C3N4: toward high mechanical stability, catalytic efficiency and sustainability, Applied Catalysis B: Environmental, vol. 322, p. 122069, 2023.
L. Wang, Jia, M., Shylesh, S., Philippi, T., Seifert, A., Ernst, S., Singh, A. Pal, and Thiel, W. R., Covalently immobilized triphenylphosphine rhodium complex: synthesis, characterization, and application in catalytic olefin hydrogenation, Chemcatchem, vol. 2, no. 11, pp. 1477-1482, 2010.
S. Sisodiya, Lazar, A., Shylesh, S., Wang, L., Thiel, W. R., and Singh, A. Pal, Covalently anchored ruthenium-phosphine complex on mesoporous organosilica: catalytic applications in hydrogenation reactions, Catalysis Communications, vol. 25, pp. 22-27, 2012.
P. Sharma and Singh, A. P., Covalently anchored 2,4,6-triallyloxy-1,3,5-triazine Pd(II) complex over a modified surface of SBA-15: catalytic application in hydrogenation reaction, RSC Advances, vol. 4, no. 102, pp. 58467-58475, 2014.
H. Sekhar Sasmal, Halder, A., Kunjattu, S., Dey, K., Nadol, A., Ajithkumar, T. G., Bedadur, P. Ravindra, and Banerjee, R., Covalent self-assembly in two dimensions: connecting covalent organic framework nanospheres into crystalline and porous thin films, Journal of the American Chemical Society, vol. 141, no. 51, p. 20379, 2019.
S. Kandambeth, Dey, K., and Banerjee, R., Covalent organic frameworks: chemistry beyond the structure , Journal of the American Chemical Society, vol. 141, no. 5, pp. 1807-1822, 2019.
S. Kandambeth, Dey, K., and Banerjee, R., Covalent organic frameworks: chemistry beyond the structure, Journal of the American Chemical Society, vol. 141 , no. 5, pp. 1807–1822, 2018.
R. Banerjee and Champness, N. R., Covalent organic frameworks and organic cage structures, CrystEngComm, vol. 19, no. 33, 2017.
J. Thote, Aiyappa, H. Barike, Deshpande, A., Diaz, D. Diaz, Kurungot, S., and Banerjee, R., Covalent organic framework-cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production, Chemistry A-European Journal, vol. 20, no. 48, pp. 15961-15965, 2014.
C. Chandran, Singh, H. Dev, Leo, L. S., Shekhar, P., Rase, D., Chakraborty, D., Vinod, C. P., and Vaidhyanathan, R., Covalent organic framework with electrodeposited copper nanoparticles - a desirable catalyst for the Ullmann coupling reaction, Journal of Materials Chemistry A, vol. 10, no. 29, pp. 15647-15656, 2022.
K. Dey and Banerjee, R., Covalent organic framework thin-films for molecular separation, Acta Crystallographica A‐Foundation and Advances, vol. 70, p. C547, 2014.
S. Bag, Sasmal, H. Sekhar, Chaudhary, S. Pratap, Dey, K., Blaette, D., Guntermann, R., Zhang, Y., Poloz, M., Kuc, A., Shelke, A., Vijayaraghavan, R. K., Ajithkumar, T. G., Bhattacharyya, S., Heine, T., Bein, T., and Banerjee, R., Covalent organic framework thin-film photodetectors from solution-processable porous nanospheres, Journal of the American Chemical Society, vol. 145, no. 3, pp. 1649-1659, 2023.
A. Kumar Mahato, Pal, S., Dey, K., Reja, A., Paul, S., Shelke, A., Ajithkumar, T. G., Das, D., and Banerjee, R., Covalent organic framework cladding on peptide-amphiphile-based biomimetic catalysts, Journal of the American Chemical Society, vol. 145, no. 23, pp. 12793-12801, 2023.
R. Sinha Roy, Soni, S., Harfouche, R., Vasudevan, P. R., Holmes, O., de Jonge, H., Rowe, A., Paraskar, A., Hentschel, D. M., Chirgadze, D., Blundell, T. L., Gherardi, E., Mashelkar, R. Anant, and Sengupta, S., Coupling growth-factor engineering with nanotechnology for therapeutic angiogenesis, Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 31, pp. 13608-13613, 2010.
Y. Sajeev, Ghosh, A., Vaval, N., and Pal, S., Coupled cluster methods for autoionisation resonances, International Reviews in Physical Chemistry, vol. 33, no. 3, pp. 397-425, 2014.
D. B. Shinde, Majumder, M., and Pillai, V. K., Counter-ion dependent, longitudinal unzipping of multi-walled carbon nanotubes to highly conductive and transparent graphene nanoribbons, Scientific Reports, vol. 4, p. Article No. : 4363, 2014.
A. Maity, Gangopadhyay, M., Basu, A., Aute, S., Babu, S. Santhosh, and Das, A., Counteranion driven homochiral assembly of a cationic C-3-symmetric gelator through ion-pair assisted hydrogen bond, Journal of the American Chemical Society, vol. 138, no. 35, pp. 11113-11116, 2016.
S. Kheria, Rayavarapu, S., Kotmale, A. S., Shinde, D. R., Gonnade, R. G., and Sanjayan, G. J., Coumarin-appended stable fluorescent self-complementary quadruple-hydrogen-bonded molecular duplexes, Journal of Organic Chemistry, vol. 82, no. 12, pp. 6403-6408, 2017.
E. Samuel, Joshi, B., Kim, Y., Park, C., Aldalbahi, A., El-Newehy, M., Lee, H. - S., and Yoon, S. S., Cotton fabric decorated with manganese oxide nanorods as a supercapacitive flexible electrode for wearable electronics, Applied Surface Science, vol. 568, p. 150968, 2021.
N. D. Khupse and Kumar, A., Cosolvent-directed diels-alder reaction in ionic liquids, Journal of Physical Chemistry A, vol. 115, no. 36, pp. 10211-10217, 2011.
S. M. Kashid, Jin, G. Young, Bagchi, S., and Kim, Y. Sam, Cosolvent effects on solute-solvent hydrogen-bond dynamics: ultrafast 2D IR investigations, Journal of Physical Chemistry B, vol. 119, no. 49, pp. 15334-15343, 2015.
S. K. M. Unni, Mora-Hernandez, J. M., Kurungot, S., and Alonso-Vante, N., CoSe2 supported on nitrogen-doped carbon nanohorns as a methanol-tolerant cathode for air-breathing microlaminar flow fuel cells, Chemelectrochem, vol. 2, no. 9, pp. 1339-1345, 2015.
V. Shinde, Sainkar, S. R., and Patil, P. P., Corrosion protective poly(o-toluldine) coatings on copper, Corrosion Science, vol. 47, no. 6, pp. 1352-1369, 2005.
P. Pawar, Gaikwad, A. B., and Patil, P. P., Corrosion protection aspects of electrochemically synthesized poly(o-anisidine-co-o-toluidine) coatings on copper, Electrochimica Acta, vol. 52, no. 19, pp. 5958-5967, 2007.
A. N. Rane, Baikar, V. V., V. Kumar, R., and Deopurkar, R. L., Corrigendum: Agro-Industrial wastes for production of biosurfactant by bacillus subtilis ANR 88 and its application in synthesis of silver and gold nanoparticles [Front. Microbiol. 8, (492)] DOI: 10.3389/fmicb.2017.00492, Frontiers in Microbiology, vol. 8, no. MAY, 2017.
C. Saritha, Satpute, D. B., Badarayani, R., and Kumar, A., Correlations of thermodynamic properties of aqueous amino acid-electrolyte mixtures, Journal of Solution Chemistry, vol. 38, no. 1, pp. 95-114, 2009.
K. Anjali, Ajithkumar, T. G., and Joy, P. Alias, Correlations between structure, microstructure, density and dielectric properties of the lead-free ferroelectrics Bi0.5(Na,K)0.5TiO3, Journal of Advanced Dieletrics, vol. 5, no. 4, pp. 1550028 Page 1-6, 2015.
K. Talukdar, Sasmal, S., Nayak, M. K., Vaval, N., and Pal, S., Correlation trends in the magnetic hyperfine structure of atoms: a relativistic coupled-cluster case study, Physical Review A, vol. 98, no. 2, 2018.
M. I. Tamboli, Bahadur, V., Gonnade, R. G., and Shashidhar, M. S., Correlation of the solid-state reactivities of racemic 2,4(6)-di-O-benzoyl-myo-inositol 1,3,5-orthoformate and its 4,4 `-bipyridine cocrystal with their crystal structures, Acta Crystallographica Section C-Structural Chemistry, vol. 70, no. Part : 11, p. 1040+, 2014.
S. Krishnaswamy and Shashidhar, M. S., Correlation of intermolecular acyl transfer reactivity with noncovalent lattice interactions in molecular crystals: toward prediction of reactivity of organic molecules in the solid state, Journal of Organic Chemistry, vol. 83, no. 7, pp. 3952-3959, 2018.
G. S. Jedhe, Paul, D., Gonnade, R. G., Santra, M. K., Hamel, E., Nguyen, T. Luong, and Sanjayan, G. J., Correlation of hydrogen-bonding propensity and anticancer profile of tetrazole-tethered combretastatin analogues, Bioorganic & Medicinal Chemistry Letters, vol. 23, no. 16, pp. 4680-4684, 2013.
K. Kaushlendra, Deepak, V. D., and Asha, S. K., Correlation of architecture with excimer emission in 100% pyrene-labeled self-assembled polymers, Journal of Polymer Science Part A-Polymer Chemistry, vol. 49, no. 7, pp. 1678-1690, 2011.
A. Susan, Kibey, A., Kaware, V., and Joshi, K., Correlation between the variation in observed melting temperatures and structural motifs of the global minima of gallium clusters: an ab initio study, Journal of Chemical Physics, vol. 138, no. 1, p. 014303, 2013.
P. Redhu, Punia, R., Hooda, A., Malik, B. P., Sharma, G., and Sharma, P., Correlation between multifunctional properties of lead free Iron doped BCT perovskite ceramics, Ceramics International, vol. 46, no. 11, pp. 17495-17507, 2020.
Y. Harima, Ogawa, F., Patil, R., and Jiang, X., Correlation between mobility enhancement and conformational change in polyaniline and its derivatives: polaron lattice formation, Electrochimica Acta, vol. 52, no. 11, pp. 3615-3620, 2007.
A. Mallick, Kundu, T., and Banerjee, R., Correlation between coordinated water content and proton conductivity in Ca-BTC-based metal-organic frameworks, Chemical Communications, vol. 48, no. 70, pp. 8829-8831, 2012.
A. Lazar, George, S. C., Jithesh, P. R., Vinod, C. P., and Singh, A. P., Correlating the role of hydrophilic/hydrophobic nature of Rh(I) and Ru(II) supported organosilica/silica catalysts in organotransformation reactions, Applied Catalysis A-General, vol. 513, pp. 138-146, 2016.
P. Deb, Haldar, T., Kashid, S. M., Banerjee, S., Chakrabarty, S., and Bagchi, S., Correlating Nitrile IR frequencies to local electrostatics quantifies noncovalent interactions of peptides and proteins, Journal of Physical Chemistry B, vol. 120, no. 17, pp. 4034-4046, 2016.
Y. Sajeev, Santra, R., and Pal, S., Correlated complex independent particle potential for calculating electronic resonances, Journal of Chemical Physics, vol. 123, no. 20, p. 204110, 2005.
K. M. Solntsev, Ghosh, D., Amador, A., Josowicz, M., and Krylov, A. I., Correction to what drives the redox properties of model green fluorescence protein chromophores?, Journal of Physical Chemistry Letters, vol. 2, no. 21, pp. 2695–2695, 2011.
N. Bachhar, Kurnaraswamy, G., and Kumar, S. K., Core-size dispersity dominates the self-assembly of polymer grafted nanoparticles in solution, Macromolecules, vol. 52, no. 13, pp. 4888-4894, 2019.
M. B. Gawande, Goswami, A., Asefa, T., Guo, H., Biradar, A. V., Peng, D. - L., Zboril, R., and Varma, R. S., Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis, Chemical Society Reviews, vol. 44, no. 21, pp. 7540-7590, 2015.
C. S. Bhatt, Nagaraj, B., Ghosh, D., Ramasamy, S., Thapa, R., Marpu, S. B., and Suresh, A. K., Core-composite mediated separation of diverse nanoparticles to purity, Soft Matter, vol. 15, no. 39, pp. 7787-7794, 2019.
V. V. Deshpande, Patil, M. M., Navale, S. C., and Ravi, V., Coprecipitation technique to prepare ZnM2O6 powders, Bulletin of Materials Science, vol. 28, no. 3, pp. 205-207, 2005.
V. Ravi, Coprecipitation technique to prepare SrNb2O6, Materials Characterization, vol. 55, no. 1, pp. 92-95, 2005.
V. A. Murugan, Gaikwad, A. B., Samuel, V., and Ravi, V., Coprecipitation technique to prepare Sr0.5Ba0.5Nb2O6, Bulletin of Materials Science, vol. 29, no. 3, pp. 221-223, 2006.
V. Samuel, Gaikwad, A. B., Jadhav, A. D., Natarajan, N., and Ravi, V., Coprecipitation technique to prepare NiNb2O6, Materials Letter, vol. 61, no. 11-12, pp. 2354-2355, 2007.
V. Samuel, Gaikwad, A. B., and Ravi, V., Coprecipitation technique to prepare NaNbO3 and NaTaO3, Bulletin of Materials Science, vol. 29, no. 2, pp. 123-125, 2006.
S. C. Navale, Gaikwad, A. B., and Ravi, V., Coprecipitation technique to prepare LiTaO3 powders, Materials Letters, vol. 60, no. 8, pp. 1047-1048, 2006.
I. S. Mulla, Natarajan, N., Gaikwad, A. B., Samuel, V., Guptha, U. N., and Ravi, V., Coprecipitation technique to prepare CoTa2O6 and CoNb2O6, Materials Letter, vol. 61, no. 11-12, pp. 2127-2129, 2007.
H. Muthurajan, Gupta, U. N., Rituraj, B., N. Rao, K., Pradhan, S., Radha, R., and Ravi, V., Co-precipitation technique to prepare BiTaO4 powders, Materials Letters, vol. 62, no. 3, pp. 501-503, 2008.
R. Radha, Gupta, U. N., Samuel, V., Muthurajan, H., Kumar, H. H., and Ravi, V., Co-precipitation technique to prepare BiNbO4 powders, Ceramics International, vol. 34, no. 6, pp. 1565-1567, 2008.
S. C. Navale, Samuel, V., Gaikwad, A. B., and Ravi, V., Co-precipitation technique to prepare BaTa2O6, Ceramics International, vol. 33, no. 2, pp. 297-299, 2007.
N. Natarajan, Samuel, V., Pasricha, R., and Ravi, V., Coprecipitation technique to prepare BaNb2O6, Materials Science and Engineering B-Solid State Materials for Advanced Technology, vol. 117, no. 2, pp. 169-171, 2005.
S. R. Dhage, Pasricha, R., A. Murugan, V., and Ravi, V., Co-precipitation technique for the preparation of ferroelectric BaBi2Ta2O9, Materials Chemistry and Physics, vol. 98, no. 2-3, pp. 344-346, 2006.
S. P. Gaikwad, Dhage, S. R., Potdar, H. S., Samuel, V., and Ravi, V., Co-precipitation method for the preparation of nanocrystalline ferroelectric SrBi2Nb2O9 ceramics, Journal of Electroceramics, vol. 14, no. 1, pp. 83-87, 2005.
S. P. Gaikwad, Potdar, H. S., Samuel, V., and Ravi, V., Co-precipitation method for the preparation of fine ferroelectric BaBi2M2O9, Ceramics International, vol. 31, no. 3, pp. 379-381, 2005.
S. P. Gaikwad, Dhage, S. R., and Ravi, V., Co-precipitation method for the preparation of ferroelectric CaBi4Ti4O15, Journal of Materials Science-Materials in Electronics, vol. 16, no. 4, pp. 229-231, 2005.
U. N. Gupta, Samuel, V., Muthurajan, H., Kumar, H. H., Patil, S. D., and Ravi, V., Co-precipitation method for preparation of Bi3TiNbO9 powders, Ceramics International, vol. 34, no. 3, pp. 675-677, 2008.
N. L. Jadhao, Musale, H. B., Gajbhiye, J. M., and Humne, V. T., Copper-mediated [3+2] oxidative cyclization of oxime acetate and its utility in the formal synthesis of fentiazac, Organic and biomolecular chemistry, vol. 22, no. 3, pp. 521-528, 2024.
S. B. Tayade, Illathvalappil, R., Lapalikar, V., Markad, D., Kurungot, S., Pujari, B., and Kumbhar, A. S., A copper(ii)-coordination polymer based on a sulfonic-carboxylic ligand exhibits high water-facilitated proton conductivity, Dalton Transactions, vol. 48, no. 29, pp. 11034-11044, 2019.
T. Joseph, Shanbhag, G. V., and Halligudi, S. B., Copper(II) ion-exchanged montmorillonite as catalyst for the direct addition of N-H bond to CC triple bond, Journal of Molecular Catalysis A - Chemical, vol. 236, no. 1-2, pp. 139-144, 2005.
G. V. Shanbhag, Joseph, T., and Halligudi, S. B., Copper(II) ion exchanged A1SBA-15: a versatile catalyst for intermolecular hydroamination of terminal alkynes with aromatic amines, Journal of Catalysis, vol. 250, no. 2, pp. 274-282, 2007.
S. Kar, Sen, S., Maji, S., Saraf, D., Ruturaj,, Paul, R., Dutt, S., Mondal, B., Rodriguez-Boulan, E., Schreiner, R., Sengupta, D., and Gupta, A., Copper(II) import and reduction are dependent on His-Met clusters in the extracellular amino terminus of human copper transporter-1, Journal of Biological Chemistry, vol. 298, no. 3, p. 101631, 2022.
P. K. Prasad and Sudalai, A., Copper(I) bromide-catalyzed carbonylative coupling of aryl halides with phenols, alcohols and amines using sodium cyanide as C-1 source: a synthesis of carboxylic acid derivatives, Advanced Synthesis & Catalysis, vol. 356, no. 10, pp. 2231-2238, 2014.
K. Hirano, Biju, A. T., and Glorius, F., Copper-catalyzed synthesis of 2-unsubstituted, n-substituted benzimidazoles, Journal of Organic Chemistry, vol. 74, no. 24, pp. 9570–9572, 2009.
S. K. Verma and Punji, B., Copper-catalyzed regioselective C-H alkylation of phenol derivatives with unactivated alkyl chlorides: manifesting a Cu(I)/Cu(III) pathway, Journal of Catalysis , vol. 430, 2024.
U. A. Kshirsagar and Argade, N. P., Copper-catalyzed intramolecular N-arylation of quinazolinones: facile convergent approach to (-)-circumdatins H and J, Organic Letters, vol. 12, no. 16, pp. 3716-3719, 2010.
D. K. Pandey, Shabade, A. B., and Punji, B., Copper-catalyzed direct arylation of indoles and related (hetero)arenes: a ligandless and solvent-free approach, Advanced Synthesis & Catalysis, vol. 362, no. 12, pp. 2534-2540, 2020.
S. Pradhan, A. Reddy, S., Devi, R. N., and Chilukuri, S. V., Copper-based catalysts for water gas shift reaction: influence of support on their catalytic activity, Catalysis Today, vol. 141, no. 1-2, pp. 72-76, 2009.
K. R. Patil, Sathaye, S. D., Hawaldar, R. R., Sathe, B. R., Mandale, A. B., and Mitra, A., Copper phthalocyanine films deposited by liquid-liquid interface recrystallization technique (LLIRCT), Journal of Colloid and Interface Science, vol. 315, no. 2, pp. 747-752, 2007.
H. Maaoui, Singh, S. K., Teodorescu, F., Coffinier, Y., Barras, A., Chtourou, R., Kurungot, S., Szunerits, S., and Boukherroub, R., Copper oxide supported on three-dimensional ammonia-doped porous reduced graphene oxide prepared through electrophoretic deposition for non-enzymatic glucose sensing, Electrochimica Acta, vol. 224, pp. 346-354, 2017.
C. V. Rode, Mane, R. B., Potdar, A. S., Patil, P. B., Niphadkar, P. S., and Joshi, P. N., Copper modified waste fly ash as a promising catalyst for glycerol hydrogenolysis, Catalysis Today, vol. 190, no. 1, pp. 31-37, 2012.
S. S. Palimkar, P. Kumar, H., Jogdand, N. R., Daniel, T., Lahoti, R. J., and Srinivasan, K. V., Copper-, ligand- and solvent-free synthesis of ynones by coupling acid chlorides with terminal alkynes, Tetrahedron Letters, vol. 47, no. 31, pp. 5527-5530, 2006.
B. Punji, Mague, J. T., Mobin, S. M., and Balakrishna, M. S., Copper (I) complexes of a thioether-functionalized short-bite aminobis(phosphonite), Polyhedron, vol. 28, no. 1, pp. 101–106, 2009.
M. Chauhan, Reddy, K. Prabhakar, Gopinath, C. S., and Deka, S., Copper Cobalt Sulfide Nanosheets Realizing a Promising Electrocatalytic Oxygen Evolution Reaction, ACS Catalysis, vol. 7, no. 9, 2017.
N. G. Patil, Basutkar, N. B., and Ambade, A. V., Copper and silver nanoparticles stabilized by bistriazole-based dendritic amphiphile micelles for 4-nitrophenol reduction, New Journal of Chemistry, vol. 41, no. 11, pp. 4546-4554, 2017.
U. N. Patel and Punji, B., Copper- and phosphine-free nickel(II)-catalyzed method for C-H bond alkynylation of benzothiazoles and related azoles, Asian Journal of Organic Chemistry, vol. 7, no. 7, pp. 1390-1395, 2018.
A. R. Gholap, Venkatesan, K., Pasricha, R., Daniel, T., Lahoti, R. J., and Srinivasan, K. V., Copper- and ligand-free sonogashira reaction catalyzed by Pd(0) nanoparticles at ambient conditions under ultrasound irradiation, Journal of Organic Chemistry, vol. 70, no. 12, pp. 4869-4872, 2005.
A. K. Pandey, Copolymerzation of L,L-lactide with epsilon-caprolactone by using novel zinc L-proline organometallic catalyst, E-Polymers, p. 139, 2010.
S. Kochrekar, Kalekar, A., Mehta, S., Damlin, P., Salomaki, M., Granroth, S., Meltola, N., Joshi, K., and Kvarnstrom, C., Copolymers of bipyridinium and metal (Zn & Ni) porphyrin derivatives; theoretical insights and electrochemical activity towards CO2, RSC Advances, vol. 11, no. 32, pp. 19844-19855, 2021.
S. Singh, Chithiravel, S., and Krishnamoorthy, K., Copolymers comprising monomers with various dipole and quadrupole as active material in organic field effect transistors, Journal of Physical Chemistry C, vol. 120, no. 46, pp. 26199-26205, 2016.
I. Matos, Fernandes, S. N., Liu, H. - R., Tevtia, A. K., Singh, R. P., Manda, L., Lemos, F., and Marques, M. M., Copolymerization of ethylene with unsaturated alcohols and methylmethacrylate using a silylated alpha-diimine nickel catalyst: molecular modeling and photodegradation studies, Journal of Applied Polymer Science, vol. 129, no. 4, pp. 1820-1832, 2013.
A. K. Pandey and Garnaik, B., Copolymerization of aleuritic acid with l-lactic acid and study the aggregation behavior in different solvents, International Journal of Research in Pharmacy and Chemistry, vol. 3, no. 2, 2013.
T. E. Sandhya, Ramesh, C., and Sivaram, S., Copolyesters based on poly(butylene terephthalate)s containing cyclohexyl and cyclopentyl ring: Effect of molecular structure on thermal and crystallization behavior, Macromolecules, vol. 40, no. 19, pp. 6906-6915, 2007.
R. A. Kalgaonkar and Jog, J. Prakash, Copolyester nanocomposites based on carbon nanotubes: reinforcement effect of carbon nanotubes on viscoelastic and dielectric properties of nanocomposites, Polymer International, vol. 57, no. 1, pp. 114-123, 2008.
B. Dhara, Sappati, S., Singh, S. K., Kurungot, S., Ghosh, P., and Ballav, N., Coordination polymers of Fe(III) and Al(III) ions with TCA ligand: distinctive fluorescence, CO2 uptake, redox-activity and oxygen evolution reaction, Dalton Transactions, vol. 45, no. 16, pp. 6901-6908, 2016.
H. Dev Singh, Nandi, S., Chakraborty, D., Singh, K., Vinod, C. P., and Vaidhyanathan, R., Coordination flexibility aided CO2-specific gating in an iron isonicotinate MOF, Chemistry-an Asian Journal, vol. 17, no. 4, p. e202101305, 2022.
S. S. Shaikh, Patil, C. R., Kondawar, S. E., and Rode, C. V., Cooperative acid-base sites of solid Ba-Zr mixed oxide catalyst for efficient isomerization of glucose to fructose in aqueous medium, ChemistrySelect, vol. 5, no. 40, pp. 12505-12513, 2020.
A. Bhattacharya, Converting ab initio energies to enthalpies of formation of free radicals. I. new atom equivalents for alkyl radicals, Aiche Journal, vol. 58, no. 2, pp. 600-609, 2012.
M. W. Kasture, Bokade, V. V., and Joshi, P. N., Conversion of fly ash - an environmentally detrimental waste to zeolite beta (BEA) for commercial catalytic applications, Journal of the American Ceramic Society, vol. 88, no. 11, pp. 3260-3263, 2005.
H. Kakkad, Khot, M., Zinjarde, S. S., RaviKumar, A., V. Kumar, R., and Kulkarni, B. D., Conversion of dried aspergillus candidus mycelia grown on waste whey to biodiesel by in situ acid transesterification, Bioresource Technology, vol. 197, pp. 502-507, 2015.
G. Deshmukh and Krishnamoorthy, K., Conversion of curved assemblies into two dimensional sheets, Nanoscale, vol. 11, no. 12, pp. 5732-5736, 2019.
B. M. Matsagar, Munshi, M. K., Kelkar, A. A., and Dhepe, P. Laxmikant, Conversion of concentrated sugar solutions into 5-hydroxymethyl furfural and furfural using Bronsted acidic ionic liquids, Catalysis Science & Technology, vol. 5, no. 12, pp. 5086-5090, 2015.
A. Shrotri, Tanksale, A., Beltramini, J. Norberto, Gurav, H., and Chilukuri, S. V., Conversion of cellulose to polyols over promoted nickel catalysts, Catalysis Science & Technology, vol. 2, no. 9, pp. 1852-1858, 2012.
K. Taniguchi, Kusumawati, E. N., Nanao, H., Rode, C. V., Sato, O., Yamaguchi, A., and Shirai, M., Conversion of benzyl phenyl ether to monoaromatics in high-temperature aqueous ethanol solution under high-pressure carbon dioxide conditions, New Journal of Chemistry, vol. 47, no. 27, pp. 12561-12569, 2023.
A. M. Khayum, Vijayakumar, V., Karak, S., Kandambeth, S., Bhadra, M., Suresh, K., Acharambath, N., Kurungot, S., and Banerjee, R., Convergent covalent organic framework thin sheets as flexible supercapacitor electrodes, ACS Applied Material & Interfaces, vol. 10, no. 33, pp. 28139-28146, 2018.

Pages