biblio

Export 25 results:
Filters: Author is Nisal, Anuya  [Clear All Filters]
Journal Article
G. Kumaraswamy, Deshmukh, Y. S., Agrawal, V. V., and Nisal, A., Composites of polypropylene with layered Mg-silsesquioxanes show an unusual combination of properties, Industrial & Engineering Chemistry Research, vol. 47, no. 11, pp. 3891-3899, 2008.
S. Hirlekar, Abhyankar, I., Kane, K., Trimukhe, K., Prabhune, A., and Nisal, A., Green antibacterial molecules: sophorolipids with varying fatty acid chain, Trends in Biomaterials and Artificial Organs, vol. 35, p. 431+, 2021.
G. Kumaraswamy, Surve, N. S., Mathew, R., Rana, A., Jha, S. K., Bulakh, N. N., Nisal, A., Ajithkumar, T. G., Rajamohanan, P. R., and Ratnagiri, R., Lamellar melting, not crystal motion, results in softening of polyoxymethylene on heating, Macromolecules, vol. 45, no. 15, pp. 5967-5978, 2012.
S. Hirlekar, Ray, D., Aswal, V. K., Prabhune, A. A., and Nisal, A., Lauric acid sophorolipid: accelerating the gelation of silk fibroin, ACS Omega, vol. 5, no. 44, pp. 28571-28578, 2020.
E. Joseph, Rajput, S. Singh, Patil, S., and Nisal, A., Mechanism of adhesion of natural polymer coatings to chemically modified siloxane polymer, Langmuir, vol. 37, no. 9, pp. 2974-2984, 2021.
I. Abhyankar, Sevi, G., Prabhune, A. A., Nisal, A., and Bayatigeri, S., Myristic acid derived sophorolipid: efficient synthesis and enhanced antibacterial activity, ACS Omega, vol. 6, no. 2, pp. 1273-1279, 2021.
P. G. Nair, Joseph, E., Killi, N., Konchada, S., Nisal, A., Gundloori, R. Venkata Na, and Dharne, M. S., One-pot bioconversion of tomato waste into poly-gamma-glutamic acid (gamma-PGA) biopolymer by a novel biocatalyst, ACS Sustainable Chemistry & Engineering, vol. 9, no. 43, pp. 14330-14334, 2021.
A. K. Anoop, Agarwal, U. S., Nisal, A., and Joseph, R., PET-SWNT nanocomposites through ultrasound assisted dissolution-evaporation, European Polymer Journal, vol. 43, no. 6, pp. 2279-2285, 2007.
P. Dubey, Kumar, S., Ravindranathan, S., Vasudevan, S., Aswal, V. K., Rajamohanan, P. R., Nisal, A., and Prabhune, A., pH dependent sophorolipid assemblies and their influence on gelation of silk fibroin protein, Materials Chemistry and Physics, vol. 203, pp. 9-16, 2018.
A. Nisal, Kalelkar, C., Bellare, J. R., and Lele, A. K., Rheology and microstructural studies of regenerated silk fibroin solutions, Rheologica Acta, vol. 52, no. 10-12, pp. 833-840, 2013.
R. Deshpande, Shukla, S., Sayyad, R., Salunke, S., Nisal, A., and Venugopalan, P., Silk fibroin and ceramic scaffolds: comparative in vitro studies for bone regeneration, Bioengineering & Translational Medicine, p. e10221, 2021.
E. Joseph, Kane, K., Parekh, N., Nisal, A., and V. Janorkar, A., Silk fibroin and recombinant elastin blend nano-coatings for implantable medical devices, Materials Today Communications, vol. 33, p. 104875, 2022.
R. Deshpande, Shukla, S., Kale, A., Deshmukh, N., Nisal, A., and Venugopalan, P., Silk fibroin microparticle scaffold for use in bone void filling: safety and efficacy studies, ACS Biomaterials Science & Engineering, vol. 8, no. 3, pp. 1226-1238, 2022.
A. Nisal, Sayyad, R., Dhavale, P., Khude, B., Deshpande, R., Mapare, V., Shukla, S., and Venugopalan, P., Silk fibroin micro-particle scaffolds with superior compression modulus and slow bioresorption for effective bone regeneration, Scientific Reports, vol. 8, p. Article Number: 7235, 2018.
S. Hirlekar, Ray, D., Aswal, V. K., Prabhune, A., Nisal, A., and Ravindranathan, S., Silk fibroin-sodium dodecyl sulfate gelation: molecular, structural, and rheological insights, Langmuir, vol. 35, no. 46, pp. 14870-14878, 2019.
P. Dubey, Kumar, S., Aswal, V. K., Ravindranathan, S., Rajamohanan, P. R., Prabhune, A., and Nisal, A., Silk fibroin-sophorolipid gelation: deciphering the underlying mechanism, Biomacromolecules, vol. 17, no. 10, pp. 3318-3327, 2016.
S. Kumar Ramadass, Perumal, S., Gopinath, A., Nisal, A., Subramanian, S., and Madhan, B., Sol-gel assisted fabrication of collagen hydrolysate composite scaffold: a novel therapeutic alternative to the traditional collagen scaffold, ACS Applied Materials & Interfaces, vol. 6, no. 17, pp. 15015-15025, 2014.
P. Dubey, Nawale, L., Sarkar, D., Nisal, A., and Prabhune, A., Sophorolipid assisted tunable and rapid gelation of silk fibroin to form porous biomedical scaffolds, RSC Advances, vol. 5, no. 43, pp. 33955-33962, 2015.
L. Thorat, Joseph, E., Nisal, A., Shukla, E., RaviKumar, A., and Nath, B. B., Structural and physical analysis of underwater silk from housing nest composites of a tropical chironomid midge, International Journal of Biological Macromolecules, vol. 163, pp. 934-942, 2020.
N. Parekh, Bijosh, C. K., Kane, K., Panicker, A., Nisal, A., Wangikar, P., and Agawane, S., Superior processability of Antheraea mylitta silk with cryo-milling: performance in bone tissue regeneration, International Journal of Biological Macromolecules, vol. 213, pp. 155-165, 2022.
S. Das, Pati, D., Tiwari, N., Nisal, A., and Gupta, S. Sen, Synthesis of silk fibroin-glycopolypeptide conjugates and their recognition with lectin, Biomacromolecules, vol. 13, no. 11, pp. 3695-3702, 2012.
A. Nisal, Trivedy, K., Mohammad, H., Panneri, S., Gupta, S. Sen, Lele, A. K., Manchala, R., Kumar, N. S., Gadgil, M., Khandelwal, H. B., More, S., and Laxman, R. Seeta, Uptake of Azo dyes into silk glands for production of colored silk cocoons using a green feeding approach, ACS Sustainable Chemistry & Engineering, vol. 2, pp. 312-317, 2014.
R. Kumar, Joseph, E., Chaudhari, A., Nisal, A., and Sharma, K. P., Viscoelastic liquid from regenerated silk fibroin in the silk i conformation: a writeable and shapeable material, ACS Applied Polymer Materials, vol. 4, no. 7, pp. 4699–4708, 2022.
N. Anant Parekh, Hushye, C., Warunkar, S., Gupta, S. Sen, and Nisal, A., Vitro study of novel microparticle based silk fibroin scaffold with osteoblast-like cells for load-bearing osteo-regenerative applications, RSC Advances, vol. 7, no. 7, pp. 26551 - 26558, 2017.