biblio

Export 40 results:
Filters: Keyword is Photocatalysis  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
S. Shenoy, Jang, E., Park, T. Joo, Gopinath, C. S., and Sridharan, K., Cadmium sulfide nanostructures: influence of morphology on the photocatalytic degradation of erioglaucine and hydrogen generation, Applied Surface Science, vol. 483, pp. 696-705, 2019.
H. Bajpai, Patra, K. Kumar, Ranjan, R., Nalajala, N., Reddy, K. Prabhakar, and Gopinath, C. S., Can half-a-monolayer of pt simulate activity like that of bulk pt? solar hydrogen activity demonstration with quasi-artificial leaf device, ACS Applied Materials & Interfaces, vol. 12, no. 27, pp. 30420-30430, 2020.
A. Sebastian, Nangia, A., and Prasad, M. Narasimha, Chapter 18 - Advances in agrochemical remediation using nanoparticles, in Agrochemicals Detection, Treatment and Remediation, M. Narasimha Prasad, Ed. Butterworth-Heinemann, 2020, pp. 465-485.
A. Roy, Arbuj, S., Waghadkar, Y., Shinde, M., Umarji, G., Rane, S., Patil, K., Gosavi, S., and Chauhan, R., Concurrent synthesis of SnO/SnO2 nanocomposites and their enhanced photocatalytic activity, Journal of Solid State Electrochemistry, vol. 21, no. 1, pp. 9-17, 2017.
J. Thote, Aiyappa, H. Barike, Deshpande, A., Diaz, D. Diaz, Kurungot, S., and Banerjee, R., Covalent organic framework-cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production, Chemistry A-European Journal, vol. 20, no. 48, pp. 15961-15965, 2014.
A. Deshpande and Gupta, N. M., Critical role of particle size and interfacial properties in the visible light induced splitting of water over the nanocrystallites of supported cadmium sulphide, International Journal of Hydrogen Energy, vol. 35, no. 8, pp. 3287-3296, 2010.
B. Tudu, Nalajala, N., Saikia, P., and Gopinath, C. S., Cu-Ni bimetal integrated TiO2 thin film for enhanced solar hydrogen generation, Solar RRL, vol. 4, no. 5, p. 1900557, 2020.
P
T. C. Jagadale, Kulkarni, M., Pravarthana, D., Ramadan, W., and Thakur, P., Photocatalytic degradation of Azo dyes using Au:TiO2, gamma-Fe2O3:TiO2 functional nanosystems, Journal of Nanoscience and Nanotechnology, vol. 12, no. 2, pp. 928-936, 2012.
R. Shetty, Kothari, G., Tambe, A. S., Kulkarni, B. D., and Kamble, S. P., Photocatalytic degradation of ciprofloxacin center dot HCl using Aeroxide (R) P-25 TiO2 photocatalyst: comparative evaluation of solar and artificial radiation, Indian Journal of Chemistry Section A-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, vol. 55, no. 1, pp. 16-22, 2016.
P. V. Korake, Sridharkrishna, R., Hankare, P. P., and Garadkar, K. M., Photocatalytic degradation of phosphamidon using Ag-doped ZnO nanorods, Toxicological and Environmental Chemistry, vol. 94, no. 6, pp. 1075-1085, 2012.
A. Klyushin, Ghosalya, M., Kokkonen, E., Eads, C., Jones, R., Nalajala, N., Gopinath, C. S., and Urpelainen, S., Photocatalytic setup for in situ and operando ambient-pressure X-ray photoelectron spectroscopy at MAX IV Laboratory, Journal of Synchrotron Radiation, vol. 30, pp. 613-619, 2023.
G. Mukherjee, Porous porphyrin organic polymer for visible light triggered hydrogen production, Acta Crystallographica A‐Foundation and Advances, vol. 70, p. C1145, 2014.
P. Devaraji and Gopinath, C. S., Pt - g-C3N4 - (Au/TiO2): electronically integrated nanocomposite for solar hydrogen generation, International Journal of Hydrogen Energy, vol. 43, no. 2, pp. 601-613, 2018.