biblio

Export 40 results:
Filters: Keyword is Photocatalysis  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
R. Das, Sarkar, S., Kumar, R., Ramarao, S. D., Cherevotan, A., Jasil, M., Vinod, C. P., Singh, A. Kumar, and Peter, S. C., Noble-metal-free heterojunction photocatalyst for selective CO2 reduction to methane upon induced strain relaxation, ACS Catalysis, vol. 12, no. 1, pp. 687-697, 2022.
K. Das, Das, R., Riyaz, M., Parui, A., Bagchi, D., Singh, A. Kumar, Singh, A. Kumar, Vinod, C. P., and Peter, S. C., Intrinsic charge polarization in Bi19S27Cl3 nanorods promotes selective C-C coupling reaction during photoreduction of CO2 to ethanol, Advanced Materials, vol. 35, no. 5, 2023.
A. Deshpande and Gupta, N. M., Critical role of particle size and interfacial properties in the visible light induced splitting of water over the nanocrystallites of supported cadmium sulphide, International Journal of Hydrogen Energy, vol. 35, no. 8, pp. 3287-3296, 2010.
P. Devaraji, Sathu, N. K., and Gopinath, C. S., Ambient oxidation of benzene to phenol by photocatalysis on Au/Ti0.98V0.02O2: role of holes, ACS Catalysis, vol. 4, no. 9, pp. 2844-2853, 2014.
P. Devaraji and Gopinath, C. S., Pt - g-C3N4 - (Au/TiO2): electronically integrated nanocomposite for solar hydrogen generation, International Journal of Hydrogen Energy, vol. 43, no. 2, pp. 601-613, 2018.
A. Dubey, Mishra, A. Kumar, Negi, S. Singh, and Gopinath, C. S., Facile, sustainable and unassisted plain water oxidation on Au/Ce0.9Ti0.1O2 nanorods in direct sunlight, Journal of Chemical Sciences, vol. 134, no. 2, p. 61, 2022.
S
K. N. Salgaonkar, Kale, S. R., Nalajala, N., Mansuri, S., and Gopinath, C. S., Selective and generic photocatalytic oxidation of alcohol with Pd-TiO2 thin films: butanols to butanal/butanone with different morphologies of Pd and 0.5 theta(Pt)-Pd counterparts, Chemistry-An Asian Journal, vol. 18, no. 6, 2023.
A. Sebastian, Nangia, A., and Prasad, M. Narasimha, Chapter 18 - Advances in agrochemical remediation using nanoparticles, in Agrochemicals Detection, Treatment and Remediation, M. Narasimha Prasad, Ed. Butterworth-Heinemann, 2020, pp. 465-485.
S. Shenoy, Jang, E., Park, T. Joo, Gopinath, C. S., and Sridharan, K., Cadmium sulfide nanostructures: influence of morphology on the photocatalytic degradation of erioglaucine and hydrogen generation, Applied Surface Science, vol. 483, pp. 696-705, 2019.
R. Shetty, Kothari, G., Tambe, A. S., Kulkarni, B. D., and Kamble, S. P., Photocatalytic degradation of ciprofloxacin center dot HCl using Aeroxide (R) P-25 TiO2 photocatalyst: comparative evaluation of solar and artificial radiation, Indian Journal of Chemistry Section A-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, vol. 55, no. 1, pp. 16-22, 2016.
T. Shijitha, Baiju, K. V., Shukla, S., Patil, K., and Warrier, K. G. K., Novel electroless process for copper coating of flyash using titania/ultraviolet-radiation/metal catalyst-system, Applied Surface Science, vol. 255, no. 13-14, pp. 6696-6704, 2009.
D. S. Shinde, Bhange, P. D., Jha, R. K., and Bhange, D. S., TiO2 nanoparticles decorated on BiOCl flakes with enhanced visible light photocatalytic activity, ChemistrySelect, vol. 5, no. 8, pp. 2618-2626, 2020.
S. Singh, Britto, V. D., Bharde, A. A., Sastry, M., Dhawan, A., and Prasad, B. L. V., Bacterial synthesis of phtocatalytically active and biocompatible TiO2 and ZnO nanoparticles, International Journal of Green Nanotechnology: Physics and Chemistry, vol. 2, no. 2, pp. 80-99, 2010.