biblio

Export 22 results:
Filters: First Letter Of Title is Q  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Q
D. D. Subhedar, Shaikh, M. H., Shingate, B. B., Nawale, L., Sarkar, D., Khedkar, V. M., Khan, F. A. Kalam, and Sangshetti, J. N., Quinolidene-rhodanine conjugates: facile synthesis and biological evaluation, European Journal of Medicinal Chemistry, vol. 125, pp. 385–399, 2017.
D. D. Subhedar, Shaikh, M. H., Nawale, L. U., Sarkar, D., Khedkar, V. M., and Shingate, B. B., Quinolidene based monocarbonyl curcumin analogues as promising antimycobacterial agents: synthesis and molecular docking study, Bioorganic & medicinal chemistry letters, vol. 27, no. 4, pp. 922-928, 2017.
S. Subhash Pandit, Mitra, S. Sribas, Giri, A. P., and Gupta, V. Shrikant, Quick method for isolating RNA from raw and ripe fleshy fruits as well as for co-isolating DNA and RNA from polysaccharide- and polyphenol-rich leaf tissues, Journal of Plant Biology, vol. 50, no. 1, pp. 60-64, 2007.
R. Ramesh and D. Reddy, S., Quest for novel chemical entities through incorporation of silicon in drug scaffolds, Journal of Medicinal Chemistry, vol. 61, no. 9, pp. 3779-3798, 2018.
N. M. Gupta, Kelkar, S. A., and Korake, P. V., Quenching effect of uranyl species in the photoluminescence emission and visible-light-driven water dissociation activity of CdS and TiO2 photocatalysts, Photochemical & Photobiological Sciences, vol. 15, no. 6, pp. 758-766, 2016.
D. Mandal and Rath, A. K., Quantum dots coupled to an oriented two-dimensional crystalline matrix for solar cell application, ACS Applied Materials & Interfaces, vol. 10, no. 45, pp. 39074-39082, 2018.
R. Reddy Devarapalli, Kamaja, C. Krishna, and Shelke, M. V., Quantum dot-decorated silicon nanowires as efficient photoelectrodes for photoelectrochemical hydrogen generation, Journal of Materials Chemistry A, vol. 2, no. 33, pp. 13352-13358, 2014.
S. Kale, Kale, A., Gholap, H., Rana, A., Desai, R., Banpurkar, A. G., Ogale, S., and Shastry, P., Quantum dot bio-conjugate: as a western blot probe for highly sensitive detection of cellular proteins, Journal of Nanoparticle Research, vol. 14, no. 3, p. 732, 2012.
A. Morarka, Agrawal, S., Kale, S., Kale, A., Ogale, S. B., Paknikar, K., and Bodas, D. S., Quantum dot based immunosensor using 3D circular microchannels fabricated in PDMS, Biosensors & Bioelectronics, vol. 26, no. 6, pp. 3050-3053, 2011.
A. H. H. Maneri, Varode, S. Suhas, Maibam, A., Ranjan, P., Krishnamurty, S., and Joshi, K., Quantum dot (Aun/Agn, n=3-8) capped single lipids: interactions and physicochemical properties, Physical Chemistry Chemical Physics, vol. 25, no. 33, pp. 22294-22303, 2023.
S. K. Apte, Garaje, S. N., Naik, S. D., Waichal, R. P., Baeg, J. - O., and Kale, B. B., Quantum confinement controlled solar hydrogen production from hydrogen sulfide using a highly stable CdS0.5Se0.5/CdSe quantum dot-glass nanosystem, Nanoscale, vol. 6, no. 2, pp. 908-915, 2014.
S. Patil, Kate, P. R., Deshpande, J. B., and Kulkarni, A. A., Quantitative understanding of nucleation and growth kinetics of silver nanowires, Chemical Engineering Journal, vol. 414, p. 128711, 2021.
R. Rajappan, Shingade, P. D., Natarajan, R., and Jayaraman, V. K., Quantitative structure-property relationship (QSPR) prediction of liquid viscosities of pure organic compounds employing random forest regression, Industrial & Engineering Chemistry Research, vol. 48, no. 21, pp. 9708-9712, 2009.
D. H. Dandekar, Kumar, M., Ladha, J. S., Ganesh, K. N., and Mitra, D., Quantitative method for normalization of transfection efficiency using enhanced green fluorescent protein, Analytical Biochemistry, vol. 342, no. 2, pp. 341-344, 2005.
A. Kumar, Rani, A., Venkatesu, P., and Kumar, A., Quantitative evaluation of the ability of ionic liquids to offset the cold-induced unfolding of proteins, Physical Chemistry Chemical Physics, vol. 16, no. 30, pp. 15806-15810, 2014.
S. Pal and Kulkarni, A. A., Quantitative comparison of strategies to delay clogging in straight capillaries, Chemical Engineering Science, vol. 199, pp. 88-99, 2019.
L. Nawale and Sarkar, D., Quantitative, automated, high content screening assay approach to anti-angiogenicdrug discovery, in National Science Day, At CSIR-NCL, Combi Chem-Bio Resource Center, OCD, National Chemical Laboratory, Pune - 411 008, 2015.
N. V. Plotnikoy, B. Prasad, R., Chakrabarty, S., Chu, Z. T., and Warshel, A., Quantifying the mechanism of phosphate monoester hydrolysis in aqueous solution by evaluating the relevant Ab initio QM/MM free-energy surfaces, Journal of Physical Chemistry B, vol. 117, no. 42, pp. 12807-12819, 2013.
V. Bhavana, Chavan, R. B., Mannava, M. K. Chaitan, Nangia, A., and Shastri, N. R., Quantification of niclosamide polymorphic forms - a comparative study by Raman, NIR and MIR using chemometric techniques, Talanta, vol. 199, pp. 679-688, 2019.
A. Mishra and Sarkar, D., Qualitative and quantitative proteomic analysis of vitamin C induced changes in mycobacterium smegmatis, Frontiers in Microbiology, vol. 6, p. Article Number: 451, 2015.
R. S. Zwart, Thompson, J. P., Milgate, A. W., Bansal, U. K., Williamson, P. M., Raman, H., and Bariana, H. S., QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat, Molecular Breeding, vol. 26, no. 1, pp. 107-124, 2010.
P. Ramya, Chaubal, A., Kulkarni, K., Gupta, L., Kadoo, N. Y., Dhaliwal, H. Singh, Chhuneja, P., Lagu, M. D., and Gupta, V., QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.), Journal of Applied Genetics, vol. 51, no. 4, pp. 421-429, 2010.