Aluminium, nitrogen-dual-doped reduced graphene oxide Co-existing with cobalt-encapsulated graphitic carbon nanotube as an activity modulated electrocatalyst for oxygen electrocatalyst for oxygen electrochemistry applications
Title | Aluminium, nitrogen-dual-doped reduced graphene oxide Co-existing with cobalt-encapsulated graphitic carbon nanotube as an activity modulated electrocatalyst for oxygen electrocatalyst for oxygen electrochemistry applications |
Publication Type | Journal Article |
Year of Publication | 2024 |
Authors | Kharabe, GPandurang, Barik, S, Veeranmaril, SKumar, Nair, A, Illathvalappil, R, Yoyakki, A, Joshi, K, Vinod, CPrabhakara, Kurungot, S |
Journal | Small |
Volume | 20 |
Issue | 35 |
Date Published | AUG |
Type of Article | Article |
ISSN | 1613-6810 |
Keywords | Al, Bifunctional catalyst, DFT study, encapsulated structure, N-dual doping, Oxygen Evolution Reaction, oxygen reduction reaction, rechargeable zinc-air battery, X-ray absorption spectroscopy |
Abstract | There is a rising need to create high-performing, affordable electrocatalysts in the new field of oxygen electrochemistry. Here, a cost-effective, activity-modulated electrocatalyst with the capacity to trigger both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in an alkaline environment is presented. The catalyst (Al, Co/N-rGCNT) is made up of aluminium, nitrogen-dual-doped reduced graphene oxide sheets co-existing with cobalt-encapsulated carbon nanotube units. Based on X-ray Absorption Spectroscopy (XAS) studies, it is established that the superior reaction kinetics in Al, Co/N-rGCNT over their bulk counterparts can be attributed to their electronic regulation. The Al, Co/N-rGCNT performs as a versatile bifunctional electrocatalyst for zinc-air battery (ZAB), delivering an open circuit potential approximate to 1.35 V and peak power density of 106.3 mW cm-2, which are comparable to the system based on Pt/C. The Al, Co/N-rGCNT-based system showed a specific capacity of 737 mAh gZn-1 compared to 696 mAh gZn-1 delivered by the system based on Pt/C. The DFT calculations indicate that the adsorption of Co in the presence of Al doping in NGr improves the electronic properties favoring ORR. Thus, the Al, Co/N-rGCNT-based rechargeable ZAB (RZAB) emerges as a highly viable and affordable option for the development of RZAB for practical applications. This manuscript reports the development of a new bifunctional catalyst that exhibits high activity and stability under practical operating conditions. The catalyst (Al, Co/N-rGCNT) is made up of aluminium, nitrogen-dual-doped reduced graphene oxide sheets co-existing with the in situ formed cobalt-encapsulated CNT units is synthesized by a scalable pyrolysis method in an inert Ar atmosphere. The developed electrocatalyst achieved enhanced the oxygen reduction reaction (ORR) and the oxygen evolution reaction OER activity as a result of the favorable synergistic modulations and the system can serve as a process-friendly air-electrode for rechargeable zinc-air battery (RZAB). image |
DOI | 10.1002/smll.202400012 |
Type of Journal (Indian or Foreign) | Foreign |
Impact Factor (IF) | 13.3 |
Add new comment