Cocrystallization of multi-kinase inhibitor pazopanib with fenamic acids: improving dissolution and inhibiting cell migration

TitleCocrystallization of multi-kinase inhibitor pazopanib with fenamic acids: improving dissolution and inhibiting cell migration
Publication TypeJournal Article
Year of Publication2023
AuthorsRai, SK, Gunnam, A, Roy, D, Rajput, R, Kulkarni, K, Nangia, AK
JournalCrystEngComm
Volume25
Issue39
Pagination5565-5574
Date PublishedOCT
Type of ArticleArticle
Abstract

A multi-kinase inhibitor, pazopanib (PAZ) is cocrystallized with cyclooxygenase (COX) inhibitor fenamic acids to investigate the dissolution rate and inhibition of cell migration in VEGF-triggered HUVEC cells to test the efficacy of stoichiometric drug-drug combinations. Crystallization experiments at the sub-milligram level in an acetonitrile-methanol mixture yielded two drug-drug salt forms of PAZ with flufenamic acid (FFA) and niflumic acid (NFA) as PAZ+center dot FFA-center dot ACN (an acetonitrile solvate named as form I) and PAZ+center dot NFA-. Structures of the crystal forms were characterized by single crystal X-ray diffraction (SC-XRD) method. Crystal structures revealed that the presence of a 2-aminopyrimidine group in PAZ is a strong partner for the carboxyl group in all solid forms, forming an acidMIDLINE HORIZONTAL ELLIPSISpyrimidine heterosynthon with COX inhibitor fenamic acids. To perform dissolution experiments and cell line analysis, the scale-up of both salt forms were done in the acetonitrile-methanol mixture through crystallization, which showed a polymorphic transformation in the case of PAZ+center dot FFA-center dot ACN (an acetonitrile solvate named form II). The thermodynamic stability of PAZ+center dot FFA-center dot ACN (form II) and PAZ+center dot NFA- were analysed using slurry experiment under ambient conditions in pH 1.2 (0.1 N HCl) buffer medium and the residual solid phase was characterized by powder XRD, which showed that PAZ+center dot FFA-center dot ACN (form II) was a metastable solid form while PAZ+center dot NFA- was a stable solid form. The dissolution experiments at gastric pH 1.2 showed that the rate of dissolution of PAZ+center dot FFA-center dot ACN was 10 times higher than PAZ+center dot NFA-. The cell migration assay suggested that PAZ+center dot FFA-center dot ACN inhibited similar to 25% and PAZ+center dot NFA- inhibited similar to 20% migration of HUVEC cells compared to PAZ alone. These investigations suggested that the drug-drug salts PAZ+center dot FFA- and PAZ+center dot NFA- would be potential combo drug candidates for clinical trials. Multi-drug crystalline salts of pazopanib with fenamic acids exhibit enhanced dissolution and 20% higher inhibition in the migration of HUVEC cells compared to the reference drug.

DOI10.1039/d3ce00773a
Type of Journal (Indian or Foreign)

Foreign

Impact Factor (IF)

3.1

Divison category: 
Biochemical Sciences
Organic Chemistry
Database: 
Web of Science (WoS)

Add new comment