Organic-inorganic perovskitoid with zwitterion cysteamine linker and its crystal-crystal transformation to ruddlesden-popper phase
Title | Organic-inorganic perovskitoid with zwitterion cysteamine linker and its crystal-crystal transformation to ruddlesden-popper phase |
Publication Type | Journal Article |
Year of Publication | 2021 |
Authors | Kour, P, Reddy, MChenna, Pal, S, Sidhik, S, Das, T, Pandey, P, Mukherjee, SPorel, Chakraborty, S, Mohite, AD, Ogale, S |
Journal | Angewandte Chemie-International Edition |
Volume | 60 |
Issue | 34 |
Pagination | 18750-18760 |
Date Published | AUG |
Type of Article | Article |
ISSN | 1433-7851 |
Keywords | Crystal growth, organic-inorganic hybrid composites, perovskite phases, photodetectors, zwitterions |
Abstract | We demonstrate synthesis of a new low-D hybrid perovskitoid (a perovskite-like hybrid halide structure, yellow crystals, P21/n space group) using zwitterion cysteamine (2-aminoethanethiol) linker, and its remarkable molecular diffusion-controlled crystal-to-crystal transformation to Ruddlesden-Popper phase (Red crystals, Pnma space group). Our stable intermediate perovskitoid distinctly differs from all previous reports by way of a unique staggered arrangement of holes in the puckered 2D configuration with a face-sharing connection between the corrugated-1D double chains. The PL intensity for the yellow phase is 5 orders higher as compared to the red phase and the corresponding average lifetime is also fairly long (143 ns). First principles DFT calculations conform very well with the experimental band gap data. We demonstrate applicability of the new perovskitoid yellow phase as an excellent active layer in a self-powered photodetector and for selective detection of Ni2+ via On-Off-On photoluminescence (PL) based on its composite with few-layer black phosphorous. |
DOI | 10.1002/anie.202105918 |
Type of Journal (Indian or Foreign) | Foreign |
Impact Factor (IF) | 15.336 |
Divison category:
Physical and Materials Chemistry
Add new comment