Recursive orthogonal least square based soft sensor for batch distillation

TitleRecursive orthogonal least square based soft sensor for batch distillation
Publication TypeJournal Article
Year of Publication2016
AuthorsMehta, S, Ramani, H, Yelgatte, NN, Rahman, I
JournalChemical product and process modeling
Volume11
Issue3
Pagination241-263
Date PublishedSEP
Type of ArticleArticle
AbstractA multiple-input and multiple-output (MIMO) model, namely Recursive Orthogonal Least Square (ROLS) based radial basis function (RBF) is developed to estimate product compositions in a batch distillation process from temperature measurements. The process data is generated by simulating the differential equations of the batch distillation process, changing the initial feed composition and boiluprate from batch to batch. Moreover, the reflux ratio is also randomly varied within each batch to represent the exact dynamics of the batch distillation. Temperature and distillate composition is correlated by the RBF trained by ROLS algorithm. A Single RBF network estimate the quality of products in real-time. The results show that ROLS based estimator give correct composition estimations for a batch distillation process. The robustness of the ROLS algorithm and low computational requirement makes the estimator attractive for on-line use.
DOI10.1515/cppm-2015-0071
Type of Journal (Indian or Foreign)Foreign
Impact Factor (IF)0.347
Divison category: 
Chemical Engineering & Process Development

Add new comment