Recursive orthogonal least square based soft sensor for batch distillation
Title | Recursive orthogonal least square based soft sensor for batch distillation |
Publication Type | Journal Article |
Year of Publication | 2016 |
Authors | Mehta, S, Ramani, H, Yelgatte, NN, Rahman, I |
Journal | Chemical product and process modeling |
Volume | 11 |
Issue | 3 |
Pagination | 241-263 |
Date Published | SEP |
Type of Article | Article |
Abstract | A multiple-input and multiple-output (MIMO) model, namely Recursive Orthogonal Least Square (ROLS) based radial basis function (RBF) is developed to estimate product compositions in a batch distillation process from temperature measurements. The process data is generated by simulating the differential equations of the batch distillation process, changing the initial feed composition and boiluprate from batch to batch. Moreover, the reflux ratio is also randomly varied within each batch to represent the exact dynamics of the batch distillation. Temperature and distillate composition is correlated by the RBF trained by ROLS algorithm. A Single RBF network estimate the quality of products in real-time. The results show that ROLS based estimator give correct composition estimations for a batch distillation process. The robustness of the ROLS algorithm and low computational requirement makes the estimator attractive for on-line use. |
DOI | 10.1515/cppm-2015-0071 |
Type of Journal (Indian or Foreign) | Foreign |
Impact Factor (IF) | 0.347 |
Divison category:
Chemical Engineering & Process Development
Add new comment