Promising field electron emission performance of vertically aligned one dimensional (1D) brookite (beta) TiO2 nanorods

TitlePromising field electron emission performance of vertically aligned one dimensional (1D) brookite (beta) TiO2 nanorods
Publication TypeJournal Article
Year of Publication2016
AuthorsDevan, RS, Ma, Y-R, More, MA, Khare, RT, Antad, VV, Patil, RA, Thakare, VP, Dhayal, RS, Schmidt-Mende, L
JournalRSC Advances
Volume6
Issue101
Pagination98722-98729
Date PublishedOCT
AbstractWe evidence field-electron emission (FE) studies on the large-area array of one-dimensional (1D) brookite (beta) TiO2 nanorods. The pure 1D beta-TiO2 nanorods of 10 nm width and 760 nm long were synthesized on Si substrate utilizing hot-filament metal vapor deposition technique. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis evidenced the beta-TiO2 nanorods to be composed of orthorhombic crystals in brookite (beta) phase. X-ray photoemission spectroscopy (XPS) revealed the formation of pure stoichiometric (i.e. 1 : 1.98) 1D TiO2 nanorods. The values of turn-on field, required to draw current density of 10 mA cm(-2), was observed 3.9 V mu m(-1) for pristine 1D beta-TiO2 nanorods emitters, which were found significantly lower than doped/undoped 1D TiO2 nanostructures (i.e. nanotubes, nanowires, nanorods) based field emitters. The enhanced FE behavior of the TiO2/Si emitter can be attributed to modulation of electronic properties due to the high aspect ratio of vertically aligned TiO2 nanorods. Furthermore, the orthodox emission situation of pristine TiO2/Si emitters exhibit good emission stability and reveal their potentials as promising FE material.
DOI10.1039/c6ra20747b
Type of Journal (Indian or Foreign)Foreign
Impact Factor (IF)3.289
Divison category: 
Physical and Materials Chemistry

Add new comment