Subtle crossover from C-H center dot center dot center dot O to S=O center dot center dot center dot C=O short contacts in the association of diastereomers of 2,4(6)-di-O-benzoyl-6(4)-O-[(1S)-10-camphorsulfonyl]-myo-inositol 1,3,5-orthoformate upon format

TitleSubtle crossover from C-H center dot center dot center dot O to S=O center dot center dot center dot C=O short contacts in the association of diastereomers of 2,4(6)-di-O-benzoyl-6(4)-O-[(1S)-10-camphorsulfonyl]-myo-inositol 1,3,5-orthoformate upon format
Publication TypeJournal Article
Year of Publication2006
AuthorsManoj, K, Gonnade, RG, Bhadbhade, MM, Shashidhar, MS
JournalCrystal Growth & Design
Volume6
Issue6
Pagination1485-1492
Date PublishedJUN
Type of ArticleArticle
ISSN1528-7483
Abstract

Diastereomers of 2,4(6)- di-O-benzoyl-6(4)-O-[(1S)-10-camphorsulfonyl]-myo-inositol 1,3,5-orthoformate associate via weak interactions to form ``head-to-head'' dimers in their crystals. Molecular association through C-H center dot center dot center dot O short contacts do not leave any void for the guest inclusion, while association through S=O center dot center dot center dot C=O bridging produces pseudopolymorphs. Three crystalline modifications are observed for the title compound: form I, monoclinic P2(1), without any guest solvent, and solvated forms II and III, that belong to monoclinic space groups P2(1) and C2, respectively. A majority of solvates, which include pyridine, dichloromethane, benzene, tetrahydrofuran, and cyclohexanone as guests, belong to form III. All these guests have 2-fold symmetry axes ( C2) with their electron count within 40-62 electrons; guest selectivity experiments indicate that planar aromatic guests ( pyridine, benzene) bind better to the host molecules as compared to nonplanar guests ( dioxane, cyclohexanone). The molecular packing that is created thorough channels in the crystal ( avoiding interpenetration of the layers) are of interest because of their potential application in molecular separation by forming selective inclusions. The diastereomeric association via S=O center dot center dot center dot C=O dipolar short contacts, a consistent feature observed in all the solvates, is thought to have relevance in the binding of sulfonyl drugs to the C=O moieties of the receptor proteins.

DOI10.1021/cg060127l
Type of Journal (Indian or Foreign)

Foreign

Impact Factor (IF)4.425
Divison category: 
Center for Material Characterization (CMC)
Organic Chemistry
Physical and Materials Chemistry