Wastewater treatment and process intensification for degradation of solvents using hydrodynamic cavitation
Title | Wastewater treatment and process intensification for degradation of solvents using hydrodynamic cavitation |
Publication Type | Journal Article |
Year of Publication | 2021 |
Authors | Patil, PB, Bhandari, VM, Ranade, VV |
Journal | Chemical Engineering and Processing-Process Intensification |
Volume | 166 |
Pagination | 108485 |
Date Published | SEP |
Type of Article | Article |
ISSN | 0255-2701 |
Keywords | Cavitation, Effluent, Organics removal, Oxidation, pollution |
Abstract | Industrial wastewater treatment for removal of small concentrations of harmful solvents is pertinent issue in many chemical and pharmaceutical industries. The present work evaluates removal of three common solvents by hydrodynamic cavitation (nominal capacity, 1m(3)/h). Solvent degradation of three solvents viz. octanol, dimethyl formamide and cyclohexanol was studied in the concentration range of 50-200 mg/L and for the pressure drop range of 0.5-5 bar. The vortex based cavitation device (vortex diode) was compared with that of linear flow based device (orifice). Process intensification in the form of aeration and addition oxidizing agent-hydrogen peroxide was also evaluated for synergistic effect. The vortex diode required lower pressure drop and is superior to orifice and process intensification using aeration is most effective. A reduction in TOC to the extent of 74% could be achieved for octanol (200 ppm) using aeration with cavitational yield of 1202x10(-4) mg/J for vortex diode, yield similar to 10 times of orifice. The degradation depends on the nature of solvent and it was revealed that low values of dielectric constant (epsilon |
DOI | 10.1016/j.cep.2021.108485 |
Type of Journal (Indian or Foreign) | Foreign |
Impact Factor (IF) | 4.237 |
Divison category:
Chemical Engineering & Process Development
Add new comment