Unusual monodentate binding mode of 2,2 `-dipyridylamine (L) in isomeric trans(acac)(2)Ru-II(L)2, trans-[(acac)(2)Ru-III(L)(2)]ClO4, and cis-(acac)(2)Ru-II(L)(2) (acac = acetylacetonate). Synthesis, structures, and spectroscopic, electrochemical, and magn

TitleUnusual monodentate binding mode of 2,2 `-dipyridylamine (L) in isomeric trans(acac)(2)Ru-II(L)2, trans-[(acac)(2)Ru-III(L)(2)]ClO4, and cis-(acac)(2)Ru-II(L)(2) (acac = acetylacetonate). Synthesis, structures, and spectroscopic, electrochemical, and magn
Publication TypeJournal Article
Year of Publication2005
AuthorsKar, S, Chanda, N, Mobin, SM, Urbanos, FA, Niemeyer, M, Puranik, VG, Jimenez-Aparicio, R, Lahiri, GKumar
JournalInorganic Chemistry
Volume44
Issue5
Pagination1571-1579
Date PublishedMAR
Type of ArticleArticle
ISSN0020-1669
Abstract

{The reaction of cis-Ru(acac)(2)(CH3CN)(2) (acac = acetylacetonate) with 2,2'-dipyridylamine (L) in ethanolic medium resulted in facile one-pot synthesis of stable [(acac)(2)Ru-III(L)]ClO4 ([1]ClO4), trans-[(acac)(2)Ru-II(L)2] (2), trans[(acac)(2)Ru-III(L)(2)[ClO4 ([2]ClO4), and cis-[(acac)(2)Ru-II(L)(2)] (3). The bivalent congener 1 was generated via electrochemical reduction Of [1]ClO4. Although in [1](+) the dipyridylamine ligand (L) is bonded to the metal ion in usual bidentate fashion, in 2/[2](+) and 3, the unusual monodentate binding mode of L has been preferentially stabilized. Moreover, in 2/[2](+) and 3, two such monodentate L's have been oriented in the trans- and cis-configurations, respectively. The binding mode of L and the isomeric geometries of the complexes were established by their single-crystal X-ray structures. The redox stability of the Ru(II) state follows the order 1 < 2 much less than 3. In contrast to the magnetic moment obtained for [1]ClO4

DOI10.1021/ic049219v
Type of Journal (Indian or Foreign)

Foreign

Impact Factor (IF)

4.82

Divison category: 
Center for Material Characterization (CMC)
Physical and Materials Chemistry