Ultrastable imine-based covalent organic frameworks for sulfuric acid recovery: an effect of interlayer hydrogen bonding
Title | Ultrastable imine-based covalent organic frameworks for sulfuric acid recovery: an effect of interlayer hydrogen bonding |
Publication Type | Journal Article |
Year of Publication | 2018 |
Authors | Halder, A, Karak, S, Addicoat, M, Bera, S, Chakraborty, A, Kunjattu, SH, Pachfule, P, Heine, T, Banerjee, R |
Journal | Angewandte Chemie-International Edition |
Volume | 57 |
Issue | 20 |
Pagination | 5797-5802 |
Date Published | MAY |
Abstract | A rapid and scalable synthesis of six new imine-linked highly porous and crystalline COFs is presented that feature exceptionally high chemical stability in harsh environments including conc. H2SO4 (18M), conc. HCl (12M), and NaOH (9M). This is because of the presence of strong interlayer C-H center dot center dot center dot N hydrogen bonding among the individual layers, which provides significant steric hindrance and a hydrophobic environment around the imine (-C=N-) bonds, thus preventing their hydrolysis in such an abrasive environment. These COFs were further converted into porous, crystalline, self-standing, and crack-free COF membranes (COFMs) with extremely high chemical stability for their potential applications for sulfuric acid recovery. The as-synthesized COFMs exhibit unprecedented permeance for acetonitrile (280 Lm(-2) h(-1) bar(-1)) and acetone (260 Lm(-2) h(-1) bar(-1)). |
DOI | 10.1002/anie.201802220 |
Type of Journal (Indian or Foreign) | Foreign |
Impact Factor (IF) | 11.994 |
Divison category:
Physical and Materials Chemistry
Polymer Science & Engineering
Add new comment