Ultra-small Au nanoclusters with tailored photoluminescence properties using modified thiol ligands: a computational and experimental demonstration

TitleUltra-small Au nanoclusters with tailored photoluminescence properties using modified thiol ligands: a computational and experimental demonstration
Publication TypeJournal Article
Year of Publication2024
AuthorsChahande, AM, Maibam, A, Krishnamurty, S, R. Devi, N
JournalParticle & Particle Systems Characterization
Volume41
Issue10
Date PublishedOCT
Type of ArticleArticle
ISSN0934-0866
KeywordsDensity functional theory, photoluminescent Au nanoclusters, surface plasmon resonance, thiol ligand
Abstract

Au nanoclusters with tailored photoluminescence can be obtained through controlled nanoparticle ligand interface chemistry. The present work reports molecular gold nanoclusters with tuneable photoluminescence emission from 600 to 700 nm using N,N `,N `'-trialkyl (11-mercaptoundecyl)ammonium chloride ligands as capping-agents. The tunability within red spectral region is regulated through specific interface chemistry between gold nanoclusters of molecular range and functional groups of the quaternary ammonium head over N,N `,N `'-trialkyl(11-mercaptoundecyl)ammonium chloride. Combined understanding obtained from the spectroscopy, microscopy, and density functional theory studies demonstrate that the functional group specific electronic interactions at the interfaces steer the emission characteristics of ``molecular'' Au nanoparticles. The study clearly identifies that bulkier functional groups, i.e., triethyl, tripropyl, tributyl, and dimethyl benzene over N+ (of thiol ligand) through their steric effects minimize the particle size giving rise to tunable photoluminescence emission in red spectral region. However, the red shift seen in the emission Au nanoclusters with N-(11-mercaptoundecyl)-N,N `-dimethylbenzenammonium chloride ligand in contradiction to particle size effect is computationally proved to be due to the delocalization of electron density from benzene aromatic ring to N+ of ammonium head leading to a reduction in the HOMO-LUMO energy gap. Fluorescence properties of water dispersible Au nanoclusters are tuned by varying the ammonium head group. Density Functional Theory studies correlate the distinction in emission when head group is phenyl to charge transfer characteristics. image

DOI10.1002/ppsc.202400011
Type of Journal (Indian or Foreign)

Foreign

Impact Factor (IF)

2.7

Divison category: 
Catalysis and Inorganic Chemistry
Physical and Materials Chemistry
Database: 
Web of Science (WoS)

Add new comment