Surface modification of aligned CdO nanosheets and their enhanced field emission properties
Title | Surface modification of aligned CdO nanosheets and their enhanced field emission properties |
Publication Type | Journal Article |
Year of Publication | 2016 |
Authors | Bagal, VS, Patil, GP, Deore, AB, Suryawanshi, SR, Late, DJ, More, MA, Chavan, PG |
Journal | RSC Advances |
Volume | 6 |
Issue | 47 |
Pagination | 41261-41267 |
Date Published | APR |
ISSN | 2046-2069 |
Abstract | Porous aligned CdO nanosheets were grown on a cadmium (Cd) substrate by the simple and cost effective method of thermal annealing. Further, decoration of gold (Au) nanoparticles on the porous aligned CdO nanosheets (specimen A) was achieved by coating with a Au thin film and subsequent annealing treatment. The average diameters of decorated Au nanoparticles were found to be 15 nm, 21 nm and 28 nm for the Au thin films with 20 s, 40 s and 60 s (specimens B, C, and D) coating times. Detailed characterizations, such as structural and morphological analysis of porous CdO nanosheets and Au/CdO nanocomposite (Au decorated porous CdO nanosheets), have been carried out using a Field Emission Scanning Electron Microscope (FESEM), X-ray diffraction (XRD) and a Transmission Electron Microscope (TEM). Field emission studies of specimens A, B, C and D were carried out in the planar diode configuration. Turn-on fields of 1.9 V mu m(-1), 1.1 V mu m(-1), 2.4 V mu m(-1) and 2.8 V mu m(-1) have been found for the emission current density of 10 RA cm(-2) for specimens A, B, C and D, respectively. The observed low turn -on field of specimen B (Au diameter of 15 nm) was found to be superior to other semiconducting nanostructures reported in the literature. The field emission current stability over a period of 3 h at the preset current density of 1 RA cm(-2) is found to be excellent for all specimens. To the best of our knowledge, field emission studies along with surface modification of porous aligned CdO nanosheets have not been reported in the literature. The simple synthesis route, facile surface modification and the superior field emission results make the present emitter very suitable for micro/nano electronic devices. |
DOI | 10.1039/c5ra28000a |
Type of Journal (Indian or Foreign) | Foreign |
Impact Factor (IF) | 3.289 |