Physiologically-based pharmacokinetic model for tuberculosis drug disposition at extrapulmonary sites

TitlePhysiologically-based pharmacokinetic model for tuberculosis drug disposition at extrapulmonary sites
Publication TypeJournal Article
Year of Publication2023
AuthorsRamachandran, A, Gadgil, CJ
JournalCPT-Pharmacometrics & Systems Pharmacology
Volume12
Issue9
Pagination1274-1284
Date PublishedSEP
Type of ArticleArticle
ISSN2163-8306
Abstract

Tuberculosis (TB) is a leading cause of mortality attributed to an infectious agent. TB primarily targets the lungs, but in about 16% cases can affect other organs as well, giving rise to extrapulmonary TB (EPTB). However, an optimal regimen for EPTB treatment is not defined. Although the recommended treatment for most forms of EPTB is the same as pulmonary TB, the pharmacokinetics of EPTB therapy are not as well studied. To address this gap, we formulate a whole-body physiologically-based pharmacokinetic (PBPK) model for EPTB that for the first time includes the ability to simulate drug concentrations in the pleura and lymph node, the most commonly affected sites of EPTB. Using this model, we estimate the time-dependent concentrations, at potential EPTB infection sites, of the following four first-line anti-TB drugs: rifampicin, ethambutol, isoniazid, and pyrazinamide. We use reported plasma concentration kinetics data to estimate model parameters for each drug and validate our model using reported concentration data not used for model formulation or parameter estimation. Model predictions match the validation data, and reported pharmacokinetic parameters (maximum plasma concentration, time to reach maximum concentration) for the drugs. The model also predicts ethambutol, isoniazid, and pyrazinamide concentrations in the pleura that match reported experimental values from an independent study. For each drug, the predicted drug concentrations at EPTB sites are compared with their critical concentration. Simulations suggest that although rifampicin and isoniazid concentrations are greater than critical concentration values at most EPTB sites, the concentrations of ethambutol and pyrazinamide are lower than their critical concentrations at most EPTB sites.

DOI10.1002/psp4.13008
Type of Journal (Indian or Foreign)

Foreign

Impact Factor (IF)

3.5

Divison category: 
Chemical Engineering & Process Development
Database: 
Web of Science (WoS)

Add new comment