Novel hybrid cavitation process for enhancing and altering rate of disinfection by use of natural oils derived from plants

TitleNovel hybrid cavitation process for enhancing and altering rate of disinfection by use of natural oils derived from plants
Publication TypeJournal Article
Year of Publication2020
AuthorsMane, MB, Bhandari, VM, Balapure, K, Ranade, VV
JournalUltrasonics Sonochemistry
Volume61
Pagination104820
Date PublishedMAR
Type of ArticleArticle
ISSN1350-4177
KeywordsAntimicrobial, Cavitation, Disinfection, Oil, Wastewater treatment
Abstract

The present study is an attempt to improvise the hydrodynamic cavitation methodology for effective disinfection of water and also to suggest prototype development for practical application. The enhancement in the disinfection efficiency was evaluated specifically for the effect of pressure, temperature, pH, microbial inoculum size and also on effect of different additives for the two model microbial strains, gram-negative (Escherichia coli) and gram-positive (Staphylococcus aureus). The efficacy of the hydrodynamic cavitation is evaluated for the two types of flows/cavitation devices - linear flow in the case of orifice and vortex flow for vortex diode. The vortex diode requires significantly lower pressures, 50% lower as compared to orifice for the similar extent of disinfection. While the bacterial disinfection at high temperature is known, the usefulness of hydrodynamic cavitation is especially evident at ambient conditions and the process is effective even at very high concentrations of bacteria, not reported so far. The reactor geometry also has significant effect on the disinfection. The present study, for the first time, reports possible use of different natural oils such as castor oil, cinnamon oil, eucalyptus oil and clove oil in conjunction with hydrodynamic cavitation. The nature of oil modifies the cavitation behavior and an order of magnitude enhancement in the cavitation rate was observed for the two oils, eucalyptus and clove oil for a very small concentration of 0.1%. The increased rates of disinfection, of the order of 2-4 folds, using oil can drastically reduce the time of operation and consequently reduce cost of disinfection. A possible mechanism is proposed for the effect of oil and hydrodynamic cavitation in cell destruction through the rupture of cell wall, oxidative damage and possible DNA denaturation. A cavitation model using per pass disinfection was used to correlate the data. The increased efficiency using oils and possible benefits of the developed process, where natural oils can be perceived as biocatalysts, can have significant advantages in practical applications.

DOI10.1016/j.ultsonch.2019.104820
Type of Journal (Indian or Foreign)

Foreign

Impact Factor (IF)

6.513

Divison category: 
Chemical Engineering & Process Development

Add new comment