L-Proline functionalized dicationic framework of bifunctional mesoporous organosilica for the simultaneous removal of lead and nitrate ions

TitleL-Proline functionalized dicationic framework of bifunctional mesoporous organosilica for the simultaneous removal of lead and nitrate ions
Publication TypeJournal Article
Year of Publication2017
AuthorsDinker, MK, Ajithkumar, TG, Kulkarni, PS
JournalACS Sustainable Chemistry & Engineering
Volume5
Issue5
Pagination4188-4196
Date PublishedMAY
Type of ArticleArticle
AbstractA novel bifunctional mesoporous organosilica, PEG-functionalized bis-prolinium chloride bridged mesoporous organosilica (BPBMO) was synthesized by reacting the precursor, PEG-functionalized bis-prolinium chloride bridged organosilane (BPRIL) with tetraethyl orthosilicate (TEOS) in the presence of surfactant. The chemical conformation of BPBMO was investigated by using Fourier transform infrared (FTIR), thermogravimentric analysis (TGA), C-13, and Si-29 cross-polarization/magic angle spinning (CP/MAS) NMR techniques. The characterization represents PEG-linked-prolinium (-N+Cl-) and carboxyl (-COOH) entities, constructing the dicationic framework through siloxane (Si-O-Si) linkages. The pore-wall distribution and the periodicity of BPBMO retained during the synthesis were examined by small-angle X-ray scattering (SAXS), Brunauer-Emmett-TellerBarrett-Joyner-Halenda (BET-BJH), and transmission electron microscopy (TEM) techniques. The results revealed BPBMO as a spherical shaped solid (50-100 nm) having mesopore channels hexagonally arranged with interparticle porosity (S-BET = 487 m(2)/g and D-BJH = 5.1 nm). The material has provided active binding sites for the simultaneous removal of NO3- and Pb2+ ions when introduced in the aqueous solutions of Pb(NO3)(2) (50 mg/L, pH 6). The removal of NO3- by ion-exchange with prolinium (-N+Cl-) entities and the electrostatic interaction of Pb2+ with carboxylate (-COO-) group were characterized by using Raman spectroscopy, ion chromatography, and X-ray photoelectron spectroscopy (XPS) technique. The maximum removal of NO3- and Pia' ions were achieved within 1 h of the adsorption reaction. The adsorption has followed the Langmuir isotherm model with the adsorption capacities (q(m)) of 23.04 and 21.92 mg/g for NO3- and Pb2+ ions, respectively. The efficiency of the adsorbent was also compared with other adsorbents. Further, the BPBMO material has depicted three consecutive adsorption/desorption cycles with negligible loss in the structural conformation.
DOI10.1021/acssuschemeng.7b00132
Type of Journal (Indian or Foreign)Foreign
Impact Factor (IF)5.267
Divison category: 
Central NMR Facility

Add new comment