Fast normalization and despeckled method for skin optical coherence tomography image via deep learning

TitleFast normalization and despeckled method for skin optical coherence tomography image via deep learning
Publication TypeConference Paper
Year of Publication2023
AuthorsRahaman, J, Lukas, B, May, J, Puyana, C, Tsoukas, M, Avanaki, K
EditorChoi, B, Zeng, H
Conference NamePhotonics in Dermatology and Plastic Surgery 2023
Date PublishedJUL
PublisherSPIE
Conference Location1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
ISBN Number978-1-5106-5809-7; 978-1-5106-5810-3
KeywordsCNN, deep learning, denoising, Optical coherence tomography, speckle
Abstract

Optical coherence tomography (OCT) is well-known for its high-resolution, non-invasive imaging modality with many medical uses, including skin imaging. Nevertheless, speckle noise limits the analytical capabilities of this imaging tool, causing deterioration in contrast and less exact detection of tissue microstructural heterogeneity. To address this issue, we proposed OCT despeckling approach by combing it with normalization to reduce the speckle noise more effectively. The proposed method contains multiple steps including phase correlation for alignment of misaligned frames, frame averaging which minimizes speckle noise, region-wise pixels normalization that helps to normalize intensity pixels, a modified BM3D filtering to suppress the white and speckle, and contrast enhancement to improve the contrast appropriately. To establish the approach, we applied 130 distinct B-scan skin OCT images and validate and evaluate the performance using qualitatively and quantitatively. Although the output obtained by the algorithm is promising, the method is time-consuming because of a series of steps. To reduce the time complexity, we also develop a supervised deep learning model by mapping between noisy-despeckled image pairs. The effectiveness and applicability of our DL approach were assessed using 130 skin OCT B-scans from various body areas taken from 45 healthy people between the ages of 20 and 60. With the support of the experimental results, we demonstrate that our DL model is capable to normalize and despeckling OCT images simultaneously.

DOI10.1117/12.2651211
Type of Journal (Indian or Foreign)

Foreign

Divison category: 
Chemical Engineering & Process Development
Database: 
Web of Science (WoS)

Add new comment