Facile strategy for synthesis of ,-heterobifunctionalized poly (epsilon-caprolactones) and poly (methyl methacrylate)s containing ``clickable'' aldehyde and allyloxy functional groups using initiator approach

TitleFacile strategy for synthesis of ,-heterobifunctionalized poly (epsilon-caprolactones) and poly (methyl methacrylate)s containing ``clickable'' aldehyde and allyloxy functional groups using initiator approach
Publication TypeJournal Article
Year of Publication2013
AuthorsSane, PS, Tawade, BV, Parmar, I, Kumari, S, Nagane, S, Wadgaonkar, PP
JournalJournal of Polymer Science Part A-Polymer Chemistry
Volume51
Issue9
Pagination2091-2103
Date PublishedMAY
ISSN0887-624X
Keywordsatom transfer radical polymerization, Click chemistry, functional polymers, ring opening polymerization
Abstract

Two new initiators, namely, 4-(4-(2-(4-(allyloxy) phenyl)-5-hydroxypentane 2-yl) phenoxy)benzaldehyde and 4-(4-(allyloxy) phenyl)-4-(4-(4-formylphenoxy) phenyl) pentyl 2-bromo-2-methyl propanoate containing clickable hetero-functionalities namely aldehyde and allyloxy were synthesized starting from commercially available 4,4-bis(4-hydroxyphenyl) pentanoic acid. These initiators were utilized, respectively, for ring opening polymerization of epsilon-caprolactone and atom transfer radical polymerization of methyl methacrylate. Well-defined -aldehyde, -allyloxy heterobifunctionalized poly(epsilon-caprolactones) (Mn,GPC: 590029,000, PDI: 1.261.43) and poly(methyl methacrylate)s (Mn,GPC: 530028800, PDI: 1.191.25) were synthesized. The kinetic study of methyl methacrylate polymerization demonstrated controlled polymerization behavior. The presence of aldehyde and allyloxy functionality on polymers was confirmed by 1H NMR spectroscopy. Aldehyde-aminooxy and thiol-ene metal-free double click strategy was used to demonstrate reactivity of functional groups on polymers. (c) 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013, 51, 2091-2103

DOI10.1002/pola.26598
Type of Journal (Indian or Foreign)Foreign
Impact Factor (IF)3.245
Divison category: 
Polymer Science & Engineering