Exploring energy profiles of protein-protein interactions (PPIs) Using DFT method
Title | Exploring energy profiles of protein-protein interactions (PPIs) Using DFT method |
Publication Type | Journal Article |
Year of Publication | 2019 |
Authors | Bapat, S, Vyas, R, Karthikeyan, M |
Journal | Letters in Drug Design & Discovery |
Volume | 16 |
Issue | 6 |
Pagination | 670-677 |
Date Published | JUN |
Type of Article | Article |
Abstract | Background: Large-scale energy landscape characterization of protein-protein interactions (PPIs) is important to understand the interaction mechanism and protein-protein docking methods. The experimental methods for detecting energy landscapes are tedious and the existing computational methods require longer simulation time. Objective: The objective of the present work is to ascertain the energy profiles at the interface regions in a rapid manner to analyze the energy landscape of protein-protein interactions Methods: The atomic coordinates obtained from the X-ray and NMR spectroscopy data are considered as inputs to compute cumulative energy profiles for experimentally validated protein-protein complexes. The energies computed by the program were comparable to the standard molecular dynamics simulations. Results: The PPI Profiler not only enables rapid generation of energy profiles but also facilitates the detection of hot spot residue atoms involved therein. Conclusion: The hotspot residues and their computed energies matched with the experimentally determined hot spot residues and their energies which correlated well by employing the MM/GBSA method. The proposed method can be employed to scan entire proteomes across species at an atomic level to study the key PPI interactions. |
DOI | 10.2174/1570180815666180815151141 |
Type of Journal (Indian or Foreign) | Foreign |
Impact Factor (IF) | 0.953 |
Add new comment