Effective fragment potential method in Q-CHEM: a guide for users and developers

TitleEffective fragment potential method in Q-CHEM: a guide for users and developers
Publication TypeJournal Article
Year of Publication2013
AuthorsGhosh, D, Kosenkov, D, Vanovschi, V, Flick, J, Kaliman, I, Shao, Y, Gilbert, ATB, Krylov, AI, Slipchenko, LV
JournalJournal of Computational Chemistry
Volume34
Issue12
Pagination1060-1070
Date PublishedMAY
ISSN0192-8651
Keywordseffective fragment potential, EFP library, hybrid QM, IQMOL, MM, modular code, nonempirical force field, Q-CHEM, WEBMO
Abstract

A detailed description of the implementation of the effective fragment potential (EFP) method in the Q-CHEM electronic structure package is presented. The Q-CHEM implementation interfaces EFP with standard quantum mechanical (QM) methods such as HartreeFock, density functional theory, perturbation theory, and coupled-cluster methods, as well as with methods for electronically excited and open-shell species, for example, configuration interaction, time-dependent density functional theory, and equation-of-motion coupled-cluster models. In addition to the QM/EFP functionality, a fragment-only feature is also available (when the system is described by effective fragments only). To aid further developments of the EFP methodology, a detailed description of the C++ classes and EFP module's workflow is presented. The EFP input structure and EFP job options are described. To assist setting up and performing EFP calculations, a collection of Perl service scripts is provided. The precomputed EFP parameters for standard fragments such as common solvents are stored in Q-CHEM's auxiliary library; they can be easily invoked, similar to specifying standard basis sets. The instructions for generating user-defined EFP parameters are given. Fragments positions can be specified by their center of mass coordinates and Euler angles. The interface with the IQMOL and WEBMO software is also described. (c) 2013 Wiley Periodicals, Inc.

DOI10.1002/jcc.23223
Type of Journal (Indian or Foreign)Foreign
Impact Factor (IF)3.601
Divison category: 
Physical and Materials Chemistry