TY - JOUR T1 - Facile access to functional polyacrylates with dual stimuli response and tunable surface hydrophobicity JF - Polymer Chemistry Y1 - 2021 A1 - Mohammad, Sk Arif A1 - Dolui, Subrata A1 - Kumar, Devendra A1 - Mane, Shivshankar R. A1 - Banerjee, Sanjib AB -

Magnetically separable and reusable Ni-Co alloy nanoparticles were employed to achieve ambient temperature reversible deactivation radical polymerization (RDRP) of methyl acrylate (MA), for the first time, yielding well-defined PMA (at least up to 124 500 g mol(-1)) with a low dispersity (D <= 1.20). The controlled polymerization character of RDRP of MA was confirmed from the linear semilogarithmic plot exhibiting pseudo first order kinetics, a linear increase of the molecular weight of the polymer with monomer conversion maintaining low D and the synthesis of PMAs of varying molecular weights from 2200 to 124 500 g mol(-1) with low D. In addition, linear PMA-Br was used as a macroinitiator for the synthesis of several well-defined PMA-b-poly(M) block copolymers (where ``M'' stands for (2-dimethylamino)ethyl methacrylate (DMAEMA), tert-butyl methylacrylate (TBMA) and 2,2,3,3,4,4,5,5-octafluoropentyl acrylate (OFPA)), with acceptable Ds (<= 1.24), demonstrating the high chain-end fidelity of the macroinitiator. The synthesized PMA-b-PDMAEMA demonstrated dual pH- and thermo-responsive properties. Upon hydrolysis, the synthesized PMA-b-PTBMA leads to the formation of unprecedented carboxylic acid-functionalized PMA derivatives. PMA-b-POFPA copolymers with varying OFPA mol% in the copolymer led to polymers with tunable surface hydrophobicity, as revealed by the water contact angle measurements.

VL - 12 IS - 20 U3 -

Foreign

U4 - 5.582 ER -