TY - JOUR T1 - Effect of solvent-substrate noncovalent interactions on the diastereoselectivity in the intramolecular carbonyl-ene and the staudinger [2+2] cycloaddition reactions JF - Journal of Physical Chemistry A Y1 - 2020 A1 - Jain, Shailja A1 - Vanka, Kumar AB -

Noncovalent interactions (NCIs) have been identified as important contributing factors for determining selectivity in organic transformations. However, cases where NCIs between solvents and substrates are responsible for a major extent for determining selectivity are rare. The current computational study with density functional theory identifies two important transformations where this is the case: the intramolecular carbonyl-ene reaction and the Staudinger [2 + 2] cycloaddition reaction. In both cases, the role of explicit solvent molecules interacting non-covalently with the substrate has been taken into account. Calculations indicate that the diastereomeric ratio would be 95.0:5.0 for the formation of tricyclic tetrahydrofuran diastereomers via the intramolecular carbonyl-ene reaction and 94.0:6.0 for the formation of the triflone diastereomers via the Staudinger [2 + 2] cycloaddition reaction, which corroborates with the experiment. Interestingly, in both the cases, the calculations indicate that noninclusion of explicit solvent molecules would lead to only a small difference between the competing transition states, which leads to the conclusion that solvent-substrate NCIs are the major cause for diastereoselectivity in both the cases considered.

VL - 124 IS - 39 U3 -

Foreign

U4 -

2.600

ER -