@article {44147, title = {Cascade reductive etherification of bioderived aldehydes over Zr-based catalysts}, journal = {ChemSusChem}, volume = {10}, year = {2017}, month = {OCT}, pages = {4090-4101}, type = {Article}, abstract = {An efficient one-pot catalytic cascade sequence has been developed for the production of value-added ethers from bioderived aldehydes. Etherification of 5-(hydroxymethyl)furfural with different aliphatic alcohols over acidic Zr-montmorillonite (Zr-Mont) catalyst produced a mixture of 5-(alkoxymethyl)furfural and 2-(dialkoxymethyl)-5-(alkoxymethyl)furan. The latter was selectively converted back into 5-(alkoxymethyl)furfural by treating it with water over the same catalyst. The synthesis of 2,5-bis(alkoxymethyl)furan was achieved through a cascade sequence involving etherification, transfer hydrogenation, and re-etherification over a combination of acidic Zr-Mont and the charge-transfer hydrogenation catalyst [ZrO(OH)(2)]. This catalyst combination was further explored for the cascade conversion of 2-furfuraldehyde into 2-(alkoxymethyl)furan. The scope of this strategy was then extended for the reductive etherification of lignin-derived arylaldehydes to obtain the respective benzyl ethers in >80\% yield. Additionally, the mixture of Zr-Mont and ZrO(OH)(2) does not undergo mutual destruction, which was proved by recycling experiments and XRD analysis. Both the catalysts were thoroughly characterized using BET, temperature-programmed desorption of NH3 and CO2, pyridine-FTIR, XRD, inductively coupled plasma optical emission spectroscopy, and X-ray photoelectron spectroscopy techniques.}, doi = {10.1002/cssc.201701275}, author = {Shinde, Suhas and Rode, Chandrashekhar} }